
The Effects of Heterogeneous Constraints on Social

Coordination and Network Formation *

Qingchao Zeng †

April 29, 2025

Abstract

In this paper, we present an evolutionary model of coordination and network formation

where there are two groups of agents who face either high or low linking constraints on the

number of links. We study the agents’ choices of actions in the 2 × 2 coordination game and

the set of agents to whom they link. For the static game, we show that both monomorphic

states (all agents play the same action) and polymorphic states (agents play different actions)

are Nash equilibria. We then study a noisy best response learning dynamics to select among

multiple Nash equilibria in the static game. We find that if both low and high constraints are

loose, the risk-dominant strategy is selected. In contrast, if both low and high constraints are

tight, the payoff-dominant action arises. Moreover, we present that the co-existence of the risk-

and payoff-dominant actions can be observed for some game parameters.
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1 Introduction

In various social and economic activities, people often benefit from adopting the same actions or

adhering to some common standards (e.g. Latex vs. Microsoft, C + + vs. Python, Windows

vs. MacOS, etc.). This can be characterised as coordination games, which have two pure Nash

equilibria, i.e. payoff-dominant equilibrium and risk-dominant equilibrium (see Harsanyi & Selten

1988). Related literature points out that agents usually coordinate on the same action (see e.g.

Kandori et al. 1993; Young 1993; Blume 1993, 1995; or Ellison 1993, 2000, etc.). However, some

examples in our real world reveal that it is often the case people do not choose the same action as

others, for example, both C + + and Python have positive market shares. Thus, it is important to

know what drives people to choose different actions and which actions will be selected in the long

run.

To solidify the idea, consider a group of students collaborating on a project. A student is better

off if she forms a team with somebody using the same software, i.e. either C + + or Python. In

addition to which software to use, her payoff from this joint project also depends on the choice of

her teammates. Therefore, each student has to make two decisions: software and collaborators to

maximise their payoffs. This example gives rise to the co-evolutionary model of 2 × 2 coordina-

tion games and network formation (see e.g. Jackson & Watts 2002, Goyal & Vega-Redondo 2005,

Staudigl & Weidenholzer 2014). Moreover, although agents have the flexibility to choose whom

they interact with, the number of interactions they can maintain is often limited due to constraints

on socialising, through e.g. decreasing marginal payoff from socialising or increasing marginal cost

of interaction (see e.g. Jackson & Watts 2002, Staudigl & Weidenholzer 2014, Cui & Weidenholzer

2021, or Cui & Shi 2022). Previous work assumes that constraints on interactions are homogeneous

for all agents. However, there is empirical evidence in real-life social networks like Twitter reveal-

ing that the number of links that agents can support is different (see e.g. Albert et al. 1999 and

Kwak et al. 2010). Thus, it seems more realistic to assume that such constraints on interactions are

heterogeneous across agents. Therefore, in this paper, we set up a co-evolutionary model of coor-

dination game and network formation, to study how such heterogeneous constraints affect agents’

action choices and linking decisions, and further, which action in the coordination game is selected
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in the long run.1

To be more specific, we follow the model of Staudigl & Weidenholzer (2014) but assume that

agents face heterogeneous linking constraints. More precisely, we consider a 2 × 2 coordination

game played among a finite number of agents. Every agent makes two choices simultaneously: the

action played in the coordination game and the set of agents she plays the game with. Forming

links is costly. The payoff of each agent is the sum of payoffs from the coordination game played

with each agent she links to, minus the total cost of forming links. We assume that there are two

groups of agents who face two different linking constraints: high and low. The size of the low-

constraint group (i.e. the number of agents in the group) is assumed to be larger than the size of the

high-constraint group.2 Linking costs are assumed to be low enough so that in principle any link is

beneficial. Thus, it is optimal for each agent to form as many links as her constraint. However, the

optimal actions in the coordination game may be different for low- and high-constraint groups.

In fact, our model shows that polymorphic states (where agents with different constraints play

different actions) may be Nash equilibria for some given game parameters. Specifically, the profiles

where agents in the low-constraint group play the payoff-dominant action and agents in the high-

constraint group play the risk-dominant action can be Nash equilibria if the low and high constraints

are significantly different. To see this point, consider a polymorphic state as described above.

Then it may be the case that agents in the low-constraint group focus all of their links on agents

playing payoff-dominant action and thus get the highest possible payoff, which is the mechanism

that drives the results in Staudigl & Weidenholzer (2014). However, agents in the high-constraint

group may lack sufficient potential interaction partners with the payoff-dominant action. Instead,

they face a distribution of mixed actions involving both risk-dominant and payoff-dominant actions,

such that playing the risk-dominant action may yield a higher expected payoff. This is similar to

the mechanism in Goyal & Vega-Redondo (2005) where the complete network is formed and the

risk-dominant action does well. Thus, such a polymorphic state can be a Nash equilibrium for

some given parameters. However, the other kind of polymorphic state where agents in the low-

constraint group play the risk-dominant action and agents in the high-constraint group play the

1See also Zeng (2019) for some static properties of Nash equilibria with heterogeneous constraints in 2× 2 coordi-
nation games and Lu & Shi (2023) for a dynamics analysis of size-dependent minimum effort game.

2This assumption has support from the empirical literature (see e.g. Goyal et al. 2006 and Jackson & Rogers 2007)
who find that a minority of agents support a large number of links.
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payoff-dominant action, can never be a Nash equilibrium. The reason is that if agents with the

higher constraint find there are sufficient potential interaction partners with the payoff-dominant

action, it has to be also the case for agents with the lower constraint. Thus, it is always profitable

for agents in the low-constraint group to deviate from the risk-dominant action. In addition, in line

with Goyal & Vega-Redondo (2005) and Staudigl & Weidenholzer (2014), monomorphic states

(where all agents play the same action) are always Nash equilibria since when all other agents play

the same action, an agent will always be better off if she chooses the same action as others.

Further, given the multiplicity of Nash equilibria, we study the co-evolution of the above static

game in discrete time to predict which kind of profiles will be selected in the long run. We assume

that at each period, agents may receive opportunities to revise their strategies based on a noisy

myopic best-response rule. That is, agents choose actions and links that optimise their payoffs

against the distribution of actions in the previous period. There is however a probability that agents

make mistakes and choose a random strategy. We follow the standard methodology developed by

Kandori et al. (1993), Young (1993) and Freidlin & Wentzell (1998) to identify the stochastically

stable states as the long-run prediction, which are the states in the support of a unique invariant

distribution when the probability of making mistakes approaches zero. Naturally, states that are

more robust to mistakes are stochastically stable.

In the first step, we identify the absorbing sets, which are the sets of states that once reached

can never be left without mistakes. The literature considering homogeneous constraints (see e.g.

Staudigl & Weidenholzer 2014 and Cui & Shi 2022) shows that the absorbing sets consist of only

monomorphic states. In contrast, in our model, polymorphic states can also be absorbing if the two

constraints on links are significantly different. Following this, we characterise the set of stochasti-

cally stable states by comparing the robustness of absorbing states to mistakes. In cases where the

low and high constraints are close, the set of stochastically stable states contains only monomor-

phic states, which is in line with the model in Goyal & Vega-Redondo (2005) and Staudigl &

Weidenholzer (2014). More precisely, the payoff-dominant action emerges in the long run if both

constraints are small. In contrast, the risk-dominant action will be selected if both constraints are

high. Surprisingly, we also find that if the low and the high constraints are significantly different

from one another, the polymorphic states where agents in the low-constraint group play the payoff-

dominant action and agents in the high-constraint group play the risk-dominant action can also be
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stochastically stable.

The structure of this paper is as follows. In section 2, we review the related literature. Section

3 outlines our model. In section 4, we characterise the Nash equilibria of the static game. Sec-

tion 5 presents our results on the set of stochastically stable states for different levels of linking

constraints. Section 6 concludes. Formal proofs of our results are relegated to the Appendix.

2 Literature review

This paper adds to the literature on the co-evolution of coordination and network formation games

(see e.g. Jackson & Watts 2002, Goyal & Vega-Redondo 2005, Staudigl & Weidenholzer 2014.).

Jackson & Watts (2002) considers a model where the network is bilaterally formed based on the

concept of pairwise stability provided by Jackson & Wolinsky (1996) and points out that whether

risk-dominant or payoff-dominant conventions are stochastically stable depends on the relation-

ships between payoffs in the coordination games and linking costs. Goyal & Vega-Redondo (2005)

consider the case where agents non-cooperatively form unilateral links and find that which conven-

tion will emerge also depends on the relative level of linking costs to payoffs. As the adjustment

process in Goyal & Vega-Redondo (2005) is different to the one used in Jackson & Watts (2002),

the precise nature of the relationship between payoffs and linking costs differs too.3 Goyal & Vega-

Redondo (2005) show that agents will coordinate on the risk-dominant action if the linking cost is

low, and they will select the payoff-dominant action if the linking cost is high. Further, Staudigl &

Weidenholzer (2014) extend Goyal & Vega-Redondo’s model by considering homogeneous con-

straints on the number of links agents can support. Their study shows that if the constraint is low

compared to the population, the payoff-dominant action is selected, while the risk-dominant action

will be selected in the long run if the constraint is high. Cui & Weidenholzer (2021) consider the

effect of lock-in on the selection of conventions based on Staudigl & Weidenholzer (2014)’s model,

where agents receive payoffs not only from links they form but also from the links they receive.

They show that agents using different actions sometimes can also be stochastically stable. Our

model differs from these studies in that agents face heterogeneous constraints on the number of

3As argued by Goyal & Vega-Redondo (2005), the main source of this discrepancy lies in the fact that in Goyal &
Vega-Redondo (2005) actions and links are chosen simultaneously but follow independent process in Jackson & Watts
(2002).
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links. Agents are distinguished by two different levels of linking constraints: high and low. We

find that such heterogeneous linking constraints will lead to the co-existence of both risk-dominant

and payoff-dominant actions.

The most closely related literature to the present work is the paper by Lu & Shi (2023). They

also study a co-evolutionary model with heterogeneous constraints on links, featuring a minimum-

effort game. They find that all agents will choose high effort levels if everybody faces low con-

straints, while low effort levels will be chosen if constraints are high for everybody. The coexistence

of different effort levels happens if constraints are significantly different. We remark that at first

sight the mechanism and results are similar. However, there are some important differences be-

tween their model and ours. While they focus on the size-dependent minimum-effort games, we

study 2 × 2 coordination games. In minimum-effort games, agents always want to match the ef-

fort level of the lowest of their interaction partners. This implies that agents choosing the high

effort level can never interact with agents choosing lower effort levels. In contrast, agents with

payoff-dominant actions may interact with those with risk-dominant actions in equilibria of our

model. Furthermore, our results emphasise that the coexistence is not driven by the particular best

response structures of minimum-effort games, where it is always best to keep the effort level in line

with the weakest link, but carry over to games where the best response to a mixed profile depends

on the exact distribution of actions. In addition, Bilancini & Boncinelli (2018) also study hetero-

geneous agents and build a model with two different types of agents, where interactions between

different types result in additional costs. They show that when the costs of interactions with dif-

ferent types are high, one type will play the risk-dominant action and the other type will play the

payoff-dominant action.

In addition to the literature on coordination and network formation games, there is also a strand

of literature where agents can determine their interaction partners by moving among a set of loca-

tions or islands (see e.g. Oechssler 1997, Dieckmann 1999, Anwar et al. 2002, Bhaskar & Vega-

Redondo 2004, and Pin et al. 2017). when there are restrictions on the mobility between locations,

or constraints on the capacity of each location, the co-existence of conventions might be observed.

However, the co-existence of conventions depends on the limited interaction between locations. In

contrast, in our model agents have the flexibility to interact with anybody.
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3 Model

We consider a 2 × 2 coordination game played among the population of n agents, denoted by

N = {1, 2, · · · , n} (n ≥ 3). Each agent i can choose an action ai from the action set A = {A,B}.

The payoff of agent i is given by u(ai, aj) when she plays this coordination game against agent j.

An agent who chooses action A in the coordination game is called an A-agent. Similarly, B-agents

are those who play action B. The payoff matrix of this coordination game is given in the following

table.

A B

A (a, a) (c, d)
B (d, c) (b, b)

We assume that b > c and a > d, so that strategy (A,A) and (B,B) are two pure strategy

Nash-Equilibria. Further, we assume b > a so that (B,B) is the payoff-dominant equilibrium that

yields the highest payoff. Moreover, we assume that a+ c > b+ d so that (A,A) is risk-dominant

equilibrium according to Harsanyi & Selten (1988), meaning that A is the best response against an

agent who plays both actions with equal probability (1
2
, 1
2
). Given all those assumptions, we can

simply have c > d. Further, we assume a > c such that A-agents prefer playing against A-agents

over playing against B-agents. Combining all assumptions together we have the following order of

payoffs b > a > c > d.

Apart from their actions in the coordination game, agents may also determine the set of agents

that they link to. We denote by gij the link decision to agent j made by agent i, where gij = 1

denotes that agent i forms a link to agent j and otherwise gij = 0. We consider the case where

links are unilaterally formed, i.e. agent i decides on the link gij and agent j does not have a say

in this link.4 We assume that agents cannot link to themselves, i.e. gii = 0. Agent i’s linking

strategy gi can be defined as a n-dimensional vector, i.e. gi = (gi1, gi2, · · · , gin) ∈ Gi = {0, 1}n.

The out-degree of agent i is denoted by douti =
∑

j gij , i.e. the number of links that agent i forms.

The network formed by all agents is denoted by g = (gi)i∈N . Agent i’s pure strategy si includes

her action choice ai ∈ A and linking strategy gi ∈ Gi, i.e. si = (ai, gi) ∈ A × Gi = Si. Further, a

4There is also some literature considering bilateral links (e.g. Jackson & Wolinsky 1996, Dutta & Mutuswami 1997
or Jackson & Watts 2002) where forming a link requires the consents of both parties.
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strategy profile is denoted by s = (s1, s2, · · · , sn) ∈ Πi∈NSi = S.

Agents play the coordination game only with those agents they link to. We assume that the

payoff generated by the coordination game only goes to the agent who forms the link. The agent

who is passively linked gets zero from the coordination game played.5 Forming links is costly and

the cost is denoted by γ. The total payoff of an agent is given by the sum of payoffs she receives

by playing the coordination game with each agent she links to, minus the total cost incurred by

forming those links. Thus, given a strategy profile s = (si)i∈N , the total payoff for agent i is given

by

Ui(si, s−i) =
n∑

j=1

gij · ui(ai, aj)− γ · douti . (1)

We focus on a case where the number of links that agent i can support is limited by ki, i.e.

douti ≤ ki as in Staudigl & Weidenholzer (2014).6 In addition, we are interested in a scenario where

linking constraints are heterogeneous among agents. Particularly, we consider a case where there

are two types of agents, one with a lower constraint kℓ and the other with a higher constraint kh,

i.e. kℓ < kh. We define the set of agents with the lower constraint as low-constraint group, denoted

by Nℓ with nℓ = |Nℓ| the number of agents. Similarly, high-constraint group is the set of agents

with the higher constraint, denoted by Nh with nh = |Nh|. We focus on the case nℓ > nh where

the low-constraint group is larger than the high-constraint group.

Consider a scenario where the linking cost is low, i.e. γ < d, so that in principle an agent wants

to form links to any other agents regardless of their actions. In this case, agents will form the

maximum number of links they can support, i.e. kℓ or kh. Thus, the total payoff function above is

equivalent to

Ui(si, s−i) =
n∑

j=1

gij · ui(ai, aj)− γ · ki (2)

where ki ∈ {kℓ, kh} is the linking constraint for agent i.

5Goyal & Vega-Redondo (2005) and Cui & Weidenholzer (2021) also consider a model where agents receive
benefits from passive links as well.

6Alternatively. we can think of this assumption as links becoming prohibitively expensive as a certain threshold is
crossed.
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Figure 1: A monomorphic state in
−→
AA when nℓ = 4, nh = 2, kℓ = 1 and kh = 2.

4 Nash Equilibrium

In our characterization of Nash equilibrium, two types of states play an important role. Firstly, we

denote by
−−→
XX the set of monomorphic states, where X ∈ {A,B}. In a monomorphic state, every

agent chooses the same action and forms the maximum number of links. More formally, the set of

monomorphic states is given by

−−→
XX = {s ∈ S|(ai = aj = X) ∧ (douti = kℓ, doutj = kh),∀i ∈ Nℓ, j ∈ Nh}.

For example, in a monomorphic state s ∈
−→
AA, all agents play action A, agents in the low-

constraint group support kℓ links, and agents in the high-constraint group support kh links. Fig 1

depicts an example of a monomorphic state in
−→
AA when nℓ = 4, nh = 2, kℓ = 1 and kh = 2.

Secondly, we denote by
−−→
XY the set of polymorphic states where X, Y ∈ {A,B} and X ̸= Y .

Less formally, in a polymorphic state, all agents in the low-constraint group play one action and

all agents in the high-constraint group play the other action. And in terms of linking strategy, all

agents exhaust their constraints. Furthermore, agents will first form links to other agents within the

same group, and then link to agents in the other group to fill up their remaining slots if any. More

formally,
−−→
XY is defined by

−−→
XY = {s ∈ S|(ai = X, aj = Y, aj ̸= ai) ∧ (douti = kℓ, doutj = kh) ∧ (

∑
i′∈Nℓ

gii′

= min{kℓ, nℓ − 1},
∑
j′∈Nh

gjj′ = min{kh, nh − 1}),∀i ∈ nℓ, j ∈ Nh}.
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Figure 2: A polymorphic state in
−→
BA when nℓ = 4, nh = 2, kℓ = 1 and kh = 2.

For example, in a polymorphic state s ∈
−→
AB, all agents in the low-constraint group play the

same action A and support kℓ links, whereas all agents in the high-constraint group Nh play action

B and support kh links. A- agents link to other A-agents first and then link to B-agents if they still

have remaining slots, e.g. if kℓ > nℓ − 1. Similarly, B- agents link to other B-agents first and then

link to A-agents if kh > nh − 1. Fig 2 depicts an example of a polymorphic state in
−→
BA when

nℓ = 4, nh = 2, kℓ = 1 and kh = 2.

Following the same mechanism as in Staudigl & Weidenholzer (2014), finding the best re-

sponse can be divided into two steps: First, for each of the two actions, determine the payoff

optimizing linking strategy and calculate the payoffs associated with it. This is summarized by

the link-optimized payoff functions (for short, the LOPs). And second, compare the LOPs across

actions and choose the one with the highest payoff.

We denote by m the number of A-agents at a given strategy profile s. The number of B-agents

is thus n−m. The LOPs are thus given by

vi(ai,m) = max
gi∈Gi

Ui((ai, gi),m), ∀i ∈ N.

where Ui((ai, gi),m) is agent i’s payoff given her strategy si = (ai, gi) and the number of A-agents

m. Consider an agent i whose linking constraint is ki ∈ {kℓ, kh}. Given the distribution of actions

(m,n−m), her LOP of choosing action A is given by

vi(A,m) = a ·min{ki,m− 1}+ c · (ki −min{ki,m− 1})−M · ki.

Intuitively, given the order of payoffs a > c, A-agents prefer playing against other A-agents

over playing against B-agents. Thus, agent i will first link to other A-agents. Considering different
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levels between the constraint ki and the number of other A-agents m− 1, the maximum number of

links to A agents that i could form is min{ki,m− 1}. After forming links to A-agents, agent i will

then fill her remaining slots ki −min{ki,m− 1} by linking to B-agents if there are any remaining

slots left.

Similarly, the order of payoffs b > d implies that B-agents prefer forming links with other B-

agents first. Then they will fill up their remaining slots by linking toA-agents. Note that aB-agents

faces n− (m− 1) other B-agents if agent i chooses to play action B. Agent i’s LOP of choosing

action B is thus given by

vi(B,m) = b ·min{ki, n−m− 1}+ d · (ki −min{ki, n−m− 1})−M · ki.

Given the LOPs, we now define the concept of Nash equilibrium in our game. Consider a

strategy profile s ∈ S and the corresponding distribution of actions (m,n−m). Strategy profile s

is a Nash equilibrium if the following two conditions hold:

i) vi(A,m) ≥ vi(B,m− 1) for all i with ai = A;

ii) vj(B,m) ≥ vj(A,m+ 1) for all j with aj = B.

We denote by S⋆ the set of Nash equilibria. Given the previous observations, we are now able

to state the following proposition which characterizes the set of Nash equilibria. In particular, Nash

equilibria correspond to the monomorphic states and the polymorphic states.

Proposition 4.1. There exist two thresholds kℓ = (b−d)(nℓ−1)−(a−c)nh

(c−d)
and kh = (b−d)nℓ−(a−c)(nh−1)

(c−d)
,

such that:

i) if kℓ ≤ kℓ and kh ≥ kh, then S⋆ =
−→
AA ∪

−−→
BB ∪

−→
BA;

ii) if kℓ > kℓ or kh < kh, then S⋆ =
−→
AA ∪

−−→
BB.

The proof to Proposition 4.1 proceeds using a series of lemmas. Note that each agent’s strategy

consists of two parts: action choice and linking choice. First, we prove that only monomorphic

states and polymorphic states can potentially be a Nash equilibrium, i.e. S⋆ ⊆
−→
AA∪

−−→
BB∪

−→
AB∪

−→
BA.

Next, we show that any strategy profile in
−→
AB is not a Nash equilibrium. That is, a Nash equilibrium
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cannot be a state where agents in the low-constraint group play the risk-dominant action and agents

in the high-constraint group play the payoff-dominant action. Then, we prove that for any kℓ and

kh, monomorphic states are always Nash equilibria. In the last step, we prove that a strategy profile

in
−→
BA is Nash equilibrium if and only if kℓ ≤ kℓ and kh ≥ kh.

Lemma 1. If s /∈
−→
AA ∪

−−→
BB ∪

−→
AB ∪

−→
BA, then s is not a Nash equilibrium.

Intuitively, since agents in the same group have the same constraints, they face the same situ-

ation. This implies that whenever it is optimal for one agent to stay at her action, then it is also

optimal for agents with the other action to switch. It follows that all agents in the same group have

to choose the same action in a Nash equilibrium.

The next lemma establishes that all monomorphic states are Nash equilibria.

Lemma 2.
−→
AA ∪

−−→
BB ⊂ S⋆ for any kℓ, kh and n.

The proof of Lemma 2 is straightforward. First, consider a strategy profile s in the monomor-

phic set
−→
AA. The corresponding distribution of actions is (n, 0). Since there are only A-agents,

none of them will deviate from playing action A as switching to B will lower their payoff per link

by a − d. Additionally, no agent has incentives to form fewer links since each link yields a − γ,

which is strictly positive. Thus, no one wants to deviate either from her current action choice or

from her linking choice. Therefore, s is a Nash equilibrium. Following the same argument as

s ∈
−→
AA, we can also prove that any strategy profile s ∈

−−→
BB is also a Nash equilibrium.

Note that coordinating on the same action always yields a higher payoff than not coordinating.

when all agents choose the same action, no one has incentives to switch to the other action. The

next two lemmas extend the discussion on Nash equilibrium to the polymorphic states.

Lemma 3. No state s ∈
−→
AB is a Nash equilibrium.

Intuitively, independent of the sizes of the two groups, a Nash equilibrium cannot be a state

where agents in the low-constraint group choose the risk-dominant action and agents in the high-

constraint group choose the payoff-dominant action. If agents in the high-constraint group choose

the payoff-dominant action, it implies that there are sufficient B-agents around for agents with

the higher constraint. Thus, for agents with the lower constraint, the number of B-agents is also

sufficient. Their best response therefore is choosing the payoff-dominant action B.
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The following lemma establishes that a polymorphic state s ∈
−→
BA could be a Nash equilibrium

for some constraints kℓ and kh.

Lemma 4.
−→
BA ⊂ S⋆ iff kℓ ≤ kℓ and kh ≥ kh.

Lemma 4 provides us with conditions for the co-existence of the risk-dominant action and the

payoff-dominant action in a Nash equilibrium. Such a Nash equilibrium is characterized by agents

in the low-constraint group choosing the payoff-dominant action, and agents in the high-constraint

group choosing the risk-dominant action. We provide two examples to develop intuition for our

findings.

Example 3.1. Figure 2 depicts a polymorphic state in
−→
BA where nℓ = 4, nh = 2, kℓ = 1 and kh =

2. For any payoffs (a, b, c, d) fulfilling our assumptions, one can check that kℓ ≤ (b−d)·3−(a−c)·2
c−d

and kh < (b−d)·4−(a−c)
c−d

hold, so that the second condition for polymorphic equilibrium is violated.7

Therefore, there exists no polymorphic equilibrium. To develop intuition, consider the strategy

profile depicted in Figure 2. If agents in the high-constraint group choose action B, their optimal

linking choice is to link to two B-agents and they will get 2 · b by doing so. If they choose action

A, the highest payoff is a + c by linking to one A-agent and one B-agent. Since b > a > c > d,

we have 2 · b > a+ c, then agents in the high-constraint group will always switch to action B.

Example 3.1 highlights that if the conditions identified in Lemma 4 fail, then there cannot be

polymorphic equilibrium. Intuitively, while the low-constraint group has a small enough constraint

so that choosing B is optimal, the constraint of agents in the high-constraint group is so small that

choosing B would be optimal for them too. If they had a larger constraint, it may be optimal for

them to stay with A as the following example shows.

Example 3.2. Figure 3 depicts another example of a polymorphic state in
−→
BA. Assume that

a+3c ≥ 3b+d.8 Agents in the low-constraint group will stay withB provided b > a. Furthermore,

agents in the high-constraint group will stay with A provided a + 3c ≥ 3b + d. To see this, note

that each agent in Nh forms three links with B-agents and one link with the other A-agent. By

playing action A, she gets 3c from playing against all B-agents and a from playing against the

7Note that b > a > c > d. Inequality kℓ ≤ (b−d)·3−(a−c)·2
c−d holds since that (b−d)·3−(a−c)·2

c−d =
(b−d)+(b−a+c−d)·2

c−d > (b−d)
c−d > 1 = kℓ. Inequality kh < (b−d)·4−(a−c)

c−d holds since that (b−d)·4−(a−c)
c−d =

(b−d)·3+(b−a+c−d)
c−d > (b−d)·3

c−d > 3 > 2 = kh.
8One can check that a+ 3c ≥ 3b+ d is plausible, e.g. (a, b, c, d) = (10, 11, 9, 1).
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Figure 3: A polymorphic state in
−−→
BA for nℓ = 3, nh = 2, kℓ = 1 and kh = 4, which is a Nash equilibrium in a

coordination game if a + 3c ≥ 3b + d. White circles represent four agents in the low-constraint group. Grey circles
represent two agents in the high-constraint group.

other A-agent. If she switches to B, she gets 3b from playing against all B-agents and d from

playing against the other A-agent. Given that a + 3c ≥ 3b + d, she will stay with action A. Thus,

the state depicted in Figure 3 is a Nash equilibrium.9

5 Myopic best response learning

As we have seen in the previous section, our model may feature a multiplicity of equilibria. To

assess which of these equilibria is most likely to arise in the long run, we consider a model of

myopic best response learning where agents make occasional mistakes in the spirit of Kandori et al.

(1993), Young (1993) and Ellison (1993, 2000). The unperturbed model is defined as follows. In

discrete-time t = 0, 1, 2, 3, · · · , each agent may receive the opportunity to revise her strategy (both

action and links) with a positive probability λ ∈ (0, 1). This probability is independent among

all agents and periods. When getting the opportunity to revise in period t, each agent chooses a

strategy that maximizes her payoff in the last period t−1. More formally, agent i chooses a strategy

in the period t as follows:

sti ∈ argmax
si∈Si

Ui(si, s
t−1
−i )

9If a + 3c ≥ 3b + d, then kℓ ≤ (b−d)·2−(a−c)·2
c−d and kh ≥ (b−d)·3−(a−c)

c−d hold so that the constraints fulfill the
conditions identified in Lemma 4.

13



where st−1
−i is the strategy profile played by agents except i in the last period t − 1. If there are

multiple best responses, agents choose one of them at random.

In light of our discussion in the previous section, this revision protocol can be analyzed in

two steps: i) for each action, agents first determine the optimal linking strategy, and ii) given the

optimal linking strategies for both actions, agents then determine which of two actions is optimal.

This approach is captured by the LOPs. Formally, an agent i chooses her action in the following

way:

i) when at−1
i = A, switch to B if vi(B,mt−1 − 1) > vi(A,m

t−1), remain with A if

vi(B,m
t−1−1) < vi(A,m

t−1), randomize betweenA andB if vi(B,mt−1−1) = vi(A,m
t−1);

ii) when at−1
i = B, switch to A if vi(A,mt−1 + 1) > vi(B,m

t−1), remain with B if

vi(A,m
t−1+1) < vi(B,m

t−1), randomize betweenA andB if vi(A,mt−1+1) = vi(B,m
t−1),

where at−1
i denotes i’s action and mt−1 is the number of A-agents in the last period t− 1.

The revision rule outlined above gives rise to a Markov chain on the state space S ≡ S1 ×S2 ×

· · · × Sn. In this context, a state s in the space S is equivalent to a strategy profile s = (si)i∈N .

We are interested in sets of states this process converges to. These sets are known as absorbing

sets (see e.g. Kandori et al. (1993), Young (1993), Freidlin & Wentzell (1998), and Ellison (2000)).

An absorbing set, denoted by S⋆⋆, is a minimum subset of S such that:

i) for any pair of states s, s′ ∈ S⋆⋆, the probability of a transition from s to s′ is positive;

ii) for any two states s ∈ S⋆⋆ and s′′ /∈ S⋆⋆, the probability of a transition from s to s′′ is zero.

We denote the set of all absorbing sets by S⋆⋆.

We now proceed to characterize those absorbing sets. By considering various ranges of the

game parameters m, n, kℓ, and kh, we have computed the switching thresholds for agents in both

groups, that is, we provide conditions on the distribution of actions when agents find it optimal to

switch actions and when they will remain at their current actions. These results are summarized in

the Table 1. This allows us to have a full characterization of absorbing sets which is presented as

the following proposition. 10

10The existence of different classes of absorbing sets in this setting has already been characterized by Zeng (2019).
This proposition goes beyond that result by identifying relevant thresholds.

14



Table 1: Where ”a.s” means that an agent always switches to the other action and ”n.s” means that
an agent never switches to the other action.

Switching Thresholds for A-agents

v(B,m− 1) ≥ v(A,m) kh > kℓ ≥ m− 1 kh ≥ m− 1 > kℓ m− 1 > kh > kℓ

kh > kℓ ≥ n−m kh > kℓ ≥ n−m kh > kℓ ≥ n−m

i ∈ Nℓ m ≤ (n−1)(b−d)−kℓ(c−d)
a+b−c−d + 1 := M1

ℓ m ≤ n− a−d
b−d k

ℓ := M2
ℓ m ≤ n− a−d

b−d k
ℓ

j ∈ Nh m ≤ (n−1)(b−d)−kh(c−d)
a+b−c−d + 1 := M1

h m ≤ (n−1)(b−d)−kh(c−d)
a+b−c−d + 1 m ≤ n− a−d

b−d k
h := M2

h

kh > kℓ ≥ m− 1 kh ≥ m− 1 > kℓ m− 1 > kh > kℓ

kh ≥ n−m > kℓ kh ≥ n−m > kℓ kh ≥ n−m > kℓ

i ∈ Nℓ a.s. a.s. a.s.

j ∈ Nh m ≤ (n−1)(b−d)−kh(c−d)
a+b−c−d + 1 m ≤ (n−1)(b−d)−kh(c−d)

a+b−c−d + 1 m ≤ n− a−d
b−d k

h

n−m > kh > kℓ

i ∈ Nℓ a.s. a.s. a.s.
j ∈ Nh a.s. a.s. a.s.

Switching Thresholds for B-agents

v(A,m+ 1) ≥ v(B,m) kh > kℓ > m kh > m ≥ kℓ m ≥ kh > kℓ

kh > kℓ > n−m− 1 kh > kℓ > n−m− 1 kh > kℓ > n−m− 1

i ∈ Nℓ m ≥ (n−1)(b−d)−kℓ(c−d)
a+b−c−d m ≥ n− 1− a−d

b−d k
ℓ m ≥ n− 1− a−d

b−d k
ℓ

j ∈ Nh m ≥ (n−1)(b−d)−kh(c−d)
a+b−c−d m ≥ (n−1)(b−d)−kh(c−d)

a+b−c−d m ≥ n− 1− a−d
b−d k

h

kh > kℓ > m kh > m ≥ kℓ m ≥ kh > kℓ

kh > n−m− 1 ≥ kℓ kh > n−m− 1 ≥ kℓ kh > n−m− 1 ≥ kℓ

i ∈ Nℓ n.s. n.s. n.s.

j ∈ Nh m ≥ (n−1)(b−d)−kh(c−d)
a+b−c−d m ≥ (n−1)(b−d)−kh(c−d)

a+b−c−d m ≥ n− 1− a−d
b−d k

h

n−m− 1 ≥ kh > kℓ

i ∈ Nℓ n.s. n.s. n.s.
j ∈ Nh n.s. n.s. n.s.

Proposition 5.1. There exist thresholds kℓ = (b−d)(nℓ−1)−(a−c)nh

(c−d)
and kh = (b−d)nℓ−(a−c)(nh−1)

(c−d)
, such

that:

i) if kℓ < kℓ and kh > kh, then S⋆⋆ =
−→
AA ∪

−−→
BB ∪

−→
BA;

ii) if kℓ ≥ kℓ or kh ≤ kh, then S⋆⋆ =
−→
AA ∪

−−→
BB.

Proposition 5.1 shows that when linking constraints kℓ and kh sufficiently differ from one

another, polymorphic states could be contained in S⋆⋆. This implies that the co-existence of the

payoff-dominant action and the risk-dominant action, in the long run, could emerge. Intuitively,
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agents in the low-constraint group have a constraint low enough such that they can fill sufficiently

many of their slots withB-agents. On the other hand, the constraint of agents in the high-constraint

group is too large to do so and they will consequently find it optimal to choose A.

As we have seen in above, there may be a multiplicity of absorbing sets under the unperturbed

myopic best response learning dynamics. To find which kind of profile is more likely to emerge in

the long run we now move forward to characterize which absorbing sets are stochastically stable.

In order to do this, we consider a case where agents may make occasional mistakes, which is also

known as perturbed myopic best response learning.

Agents are assumed to make mistakes probability ε ∈ (0, 1), i.e. they choose a state different to

the one prescribed by the unperturbed myopic best response learning dynamics. The probability ε is

assumed to be independent across agents, periods, and payoffs. Foster & Young (1990) demonstrate

that if the perturbed dynamics is ergodic, irreducible, and aperiodic, then it, which is captured

by a Markov process, has a unique invariant distribution µ(ϵ) for each fixed ϵ. The limit of this

invariant distribution exists and is µ⋆ = lim
ϵ→0

µ(ϵ). A state s such that µ⋆(s) > 0 is a so-called

stochastically stable state or a long-run equilibrium. We denote the set of all stochastically stable

states by S⋆⋆⋆ = {s ∈ S|µ⋆(s) > 0}.

With this technique, we move forward to identify the set of stochastically stable states. Which

profile turns out to be stochastically stable will depend on the level of linking constraints. The

following propositions establish our main results for various ranges of linking constraints kℓ and

kh.

In the first step, we focus on the case where there are only two monomorphic absorbing sets
−→
AA and

−−→
BB. After that, we turn to the case where

−→
BA is also absorbing.

Proposition 5.2. For any given kh ≤ kh, there exist two thresholds kℓ ≤ kℓ, such that: i) if kℓ < kℓ,

then S⋆⋆⋆ =
−−→
BB; ii) if kℓ ∈ [kℓ, kℓ], then S⋆⋆⋆ =

−−→
BB ∪

−→
AA; iii) if kℓ > kℓ, then S⋆⋆⋆ =

−→
AA.

And for any kh and kℓ such that kh > kh and kℓ ≥ kℓ , we have that S⋆⋆⋆ =
−→
AA .

Now, we provide technical intuitions for the results by using the case when both constraints are

less than half of the number of the other agents, i.e. kℓ < kh < n−1
2

. First, consider the transition

from
−→
AA to

−−→
BB. Assume that there are kℓ agents who mutate to action B and choose any linking

strategy. Then, A-agents inNℓ will find it optimal to switch toB and link to kℓ B-agents. It follows
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that the number of B-agents now is at least nℓ. Since kh < n−1
2

< nℓ, the number of B-agents

is sufficient for A-agents in Nh to switch. Thus, kℓ mutations are sufficient for this transition,

i.e. r(
−→
AA,

−−→
BB) ≤ kℓ. Next, consider the transition from

−−→
BB to

−→
AA. Note that kℓ mutations are

insufficient for this transition. To see this, assume that kℓ agents mutate to A. After this, there will

still be N − kℓ agents playing B. Since kℓ < kh ≤ n−1
2

, we have kh ≤ n − kℓ − 1. This implies

that any revising agent (either in Nℓ or Nh) will find it optimal to either stay with B or switch back

to B. It follows that r(
−−→
BB,

−→
AA) > kℓ. We thus have that r(

−−→
BB,

−→
AA) > r(

−→
AA,

−−→
BB). Thus,

−−→
BB is

the unique stochastically stable set.

In the Appendix, we provide the proof with both necessary and sufficient conditions for the

transitions to occur and thus provide a complete characterization of the set of stochastically stable

states for the case where there are only two monomorphic absorbing sets.

Intuitively, when the constraints kℓ and kh are both small, a small number ofB-agents is enough

for all agents to make choosing the payoff-dominant action optimal. With a logic similar to Staudigl

& Weidenholzer (2014), the payoff-dominant convention thus will emerge in the long run. In

contrast, if both constraints are sufficiently large, the payoff-dominant action being optimal requires

more B-agents to show up. There is increased uncertainty concerning agents’ actions with whom

one forms links. Consequently, in the long run, agents tend to choose the risk-dominant action,

which yields a higher expected payoff.

We now turn to the case where the polymorphic set
−→
BA is also absorbing. The following

proposition shows our main results of the stochastically stable set when two constraints kℓ and kh

are significantly various.

Proposition 5.3. If kh > kh and kℓ < kℓ, there exist two thresholds kℓ⋆ < kℓ and kh⋆ > kh, such

that whenever kℓ ≤ kℓ
⋆ and kh ≥ kh

⋆,
−→
BA ⊆ S⋆⋆⋆. Further, for kℓ⋆⋆ < kℓ

⋆ and kh⋆⋆ > kh
⋆, such

that whenever kℓ < kℓ
⋆⋆ and kh > kh

⋆⋆, S⋆⋆⋆ =
−→
BA.

Thus we have identified a region of parameters such that co-existence occurs.11 Proposition

5.3 shows that if constraints are significantly heterogeneous, the risk-dominant profile and payoff-

dominant profile can co-exist. To be more specific, the polymorphic states that agents in the low-

11In the cases not covered by the parameter ranges of the Proposition 5.3, i.e. kℓ ≥ kℓ
⋆ or kh ≤ kh

⋆, either the
risk-dominant convention

−→
AA or the payoff-dominant convention

−−→
BB arises as stochastically stable states. While we

have been able to obtain partial results, unfortunately, a complete characterization has eluded us.
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constraint group play the payoff-dominant action and agents in the high-constraint group play the

risk-dominant action can be stochastically stable if the lower constraint is tighter and the higher

constraint is looser.

We now revisit Example 3.2 for the intuition of Proposition 5.3.

Example 3.2 revisited. Recall that when the parameters are nℓ = 3, nh = 2, kℓ = 1 and kh = 4,

and the payoffs in the coordination game fulfils that a + 3c ≥ 3b + d,
−→
BA is an absorbing set.

Figure 4 depicts transitions from monomorphic states to polymorphic states and the other way

around, with which we can determine the robustness of these profiles to mistakes. Note that white

circles are the agents who play the risk-dominant action B and grey circles are agents who play the

payoff-dominant action A.

First, we study the transition from
−−→
BB to

−→
BA as Figure 4(a) shows. Agents 1 and 2 can support

four links, while agents 3, 4, and 5 can only support one link. Now assume that agent 1 makes a

mistake and switches to A. In the next step, agent 2 will also switch since switching to A yields

a+ 2c, which is larger than 3b+ d from reaming at B. Following this, agents in the low-constraint

group will remain at B and link with other B-agents. Thus, with one mistake we have reached a

state in
−→
BA.

Then, consider the transition from
−→
BA to

−−→
BB as Figure 4(b). Assume that agent 2 makes a

mistake and switches to B. Following this, agent 1 will switch since there are no other A-agents.

B-agents in the low-constraint group will remain since there are sufficientB-agents around. Hence,

we have reached a state in
−−→
BB with one mistake.

The transition from
−→
AA to

−→
BA is similar to the above (see Figure 4(c)). One mistake is suffi-

cient. To see this, assume that agent 4 makes a mistake and switches to B. In the next step, one

B-agent is enough for other agents in the low-constraint group to switch. However, in the present

setting, i.e. a+ 3c ≥ 3b+ d, agents 1 and 2 may choose to remain. We thus have reached a state in
−→
BA with one mutation.

Now, consider the transition from
−→
BA to

−→
AA. For agents in the low-constraint group to switch

requires there are no B-agents around. Hence, three mistakes are required for this transition.

Thus,
−−→
BB and

−→
BA can be reached from each absorbing set via a sequence of one mistake

for parameters in the present example. Consequently, both
−−→
BB and

−→
BA are stochastically stable.

However,
−→
AA cannot be reached via such a sequence, implying that more mistakes are required and
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(a)
−−→
BB to

−−→
BA (b)

−−→
BA to

−−→
BB (c)

−→
AA to

−−→
BA (d)

−−→
BA to

−→
AA

Figure 4: Tansitions among absorbing sets.

thus
−→
AA is not stochastically stable.

Transitions among absorbing sets are similar to the spread of actions. Transitions between two

monomorphic absorbing sets
−→
AA and

−−→
BB can be split into two steps: transitions into and out of the

intermediate state
−→
BA. Thus, it can be the case that from

−→
AA and

−−→
BB, transitions into

−→
BA is easier

than out of it. To see this point, if constraints are tight, transition intoB is easier, while if constraints

are loose, transition into A is easier instead, which is the mechanism that drives the results in

Staudigl & Weidenholzer (2014). Note that significantly different constraints in our model imply

that the lower constraint is tight and the higher constraint is loose. Thus, for the low-constraint

group, the payoff-dominant action B is more robust to mistakes, i.e. transition from
−→
AA into

−→
BA

requires fewer mistakes than the other way around. Similarly, for the high-constraint group, the

risk-dominant action A is more robust to mistakes, i.e. transition from
−−→
BB into

−→
BA requires fewer
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mistakes than the other way around, which is similar to the mechanism in Goyal & Vega-Redondo

(2005). Hence, transition into
−→
BA from each other may require the fewest mistakes than transitions

into the other two absorbing sets
−→
AA and

−−→
BB. Consequently,

−→
BA can be stochastically stable.

6 Conclusion

In this paper, we present an evolutionary model of coordination and network formation where there

are two groups of agents who face either high or low linking constraints on the number of links

they can form. We show that the heterogeneous constraints significantly affect the selection of

conventions.

The present work reinforces the results of homogeneous constraints where the payoff-dominated

action is selected if agents face tight constraints while the risk-dominant action is favoured if the

constraints are loose. Moreover, in contrast to the conventional results of only monomorphic states

being stochastically stable, we reveal that the co-existence of conventions can be observed when the

constraints are significantly different. In this paper, we provide both necessary and sufficient con-

ditions such that the risk-dominant convention and the payoff-dominant convention may co-exist.

Specifically, if a large portion of the population has a very tight constraint, with the other having a

very loose constraint, the larger group tends to choose the payoff-dominant action, and the smaller

group is more likely to choose the risk-dominant action.
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A Appendix

A.1 Proofs of Section 3

Proof of Lemma 1. First, consider the case where some agents do not form the maximum number

of links they can support. Given γ < d < c < a < b, those agents will fill their remaining slots

as any extra link yields at least d − γ. As a result, every agent will form the maximum number of

links.

Next, consider the case where agents within the same group play different actions, e.g. some

agents in the low-constraint group play action A and the other agents play action B. Note that the

LOPs for any agent in the same group are identical given any strategy profile. First, consider agents

in the low-constraint group. Their LOPs are given by

v(A,m) = a ·min{kℓ,m− 1}+ c · (kℓ −min{kℓ,m− 1})− γ · kℓ (3)

and

v(B,m) = b ·min{kℓ, n−m− 1}+ d · (kℓ −min{kℓ, n−m− 1})− γ · kℓ (4)

Consider two agents i and j in Nℓ. Assume that agent i plays action A and agent j plays action B.

If agent i behaves optimally, then it must be the case v(A,m) ≥ v(B,m − 1). By equations (3)

and (4), we have

a·min{kℓ,m−1}+c·(kℓ−min{kℓ,m−1}) ≥ b·min{kℓ, n−m}+d·(kℓ−min{kℓ, n−m}). (5)
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Similarly, agent j behaves optimally if v(B,m) ≥ v(A,m+ 1). We thus have

b·min{kℓ, n−m−1}+d·(kℓ−min{kℓ, n−m−1}) ≥ a·min{kℓ,m}+c·(kℓ−min{kℓ,m}). (6)

Note that for agents in the low-constraint group to choose different actions as best responses,

inequalities (5) and (6) have to hold simultaneously. We solve inequalities (5) and (6) independently

by discussing different levels of kℓ. Table 2 presents the solutions for these two inequalities for

various relevant ranges of thresholds.

One can check that inequalities (5) and (6) never have a common solution for various levels of

kℓ. This implies that both agents can’t behave optimally simultaneously. Thus, a strategy profile

where agents in the low-constraint group play different actions is not a Nash equilibrium.

The argument for agents in the high-constraint group follows the same logic and is omitted.

Therefore, for any s /∈
−→
AA ∪

−−→
BB ∪

−→
AB ∪

−→
BA, s is not a Nash equilibrium.

Table 2: Conditions on m such that i and j behave optimally at different levels of kℓ.

kℓ > m− 1 and kℓ > n−m kℓ ≤ m− 1 and kℓ > n−m kℓ ≤ n−m

v(A,m) ≥ v(B,m− 1) m ≥ (n−1)(b−d)−kℓ(c−d)
a+b−c−d + 1 m ≥ n− a−d

b−dk
ℓ never

kℓ > m and kℓ > n−m− 1 kℓ ≤ m and kℓ > n−m− 1 kℓ ≤ n−m− 1

v(B,m) ≥ v(A,m+ 1) m ≤ (n−1)(b−d)−kℓ(c−d)
a+b−c−d m ≤ n− 1− a−d

b−dk
ℓ always

Proof of Lemma 3. The proof proceeds by contradiction. Consider two agents i ∈ Nℓ and j ∈ Nh.

Note that the distribution of actions in a strategy profile s ∈
−→
AB is (nℓ, nh). Then agent i is now

playing action A and agent j is playing action B. We assume that s is a Nash equilibrium, then

neither i nor j will deviate.

Consider agent i. Agent i will stay with A if

vi(A, nℓ) = a ·min{kℓ, nℓ − 1}+ c · (kℓ −min{kℓ, nℓ − 1})−M · kℓ

≥ b ·min{kℓ, nh}+ d · (kℓ −min{kℓ, nh})−M · kℓ = vi(B, nℓ − 1).
(7)
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Similarly, agent j will stay with B if

vj(B, nℓ) = b ·min{kh, nh − 1}+ d · (kh −min{kh, nh − 1})−M · kh

≥ a ·min{kh, nℓ}+ c · (kh −min{kh, nℓ})−M · kh = vj(A, nℓ + 1).
(8)

Note that in a Nash equilibrium, inequalities (7) and (8) have to hold simultaneously. First, we solve

inequality (7) to find the switching threshold for agent i. We have three sub-cases by considering

the order of kℓ, nℓ − 1, and nh.

i) if kℓ ≤ nh ≤ nℓ − 1, we have

a · kℓ + c · (kℓ − kℓ) ≥ b · kℓ + d · (kℓ − kℓ) ⇒ a · kℓ ≥ b · kℓ ⇒ a ≥ b

which is in contradiction to the order of payoffs in the coordination game. Thus, agent i will

deviate.

ii) if nh < kℓ ≤ nℓ − 1, we have

a · kℓ + c · (kℓ − kℓ) ≥ b · nh + d · (kℓ − nh) ⇒ kℓ ≥ b− d

a− d
· nh. (9)

One can check that inequality (9) holds iff b−d
a−d

· nh ≤ nℓ − 1.12 Note that b−d
a−d

· nh > nh holds as

b−d > a−d. The solution to inequality (9) is b−d
a−d

·nh ≤ kℓ ≤ nℓ−1. Moreover, if b−d
a−d

·nh ≤ nℓ−1,

then we have that nh ≤ a−d
b−d

·nℓ− (a−d). Thus, agent i will stay with A if nh ≤ a−d
b−d

·nℓ− (a−d).

iii) if nh ≤ nℓ − 1 < kℓ, we have

a · (nℓ− 1)+ c · (kℓ− (nℓ− 1)) ≥ b ·nh+ d · (kℓ−nh) ⇒ kℓ ≥ (b− d)nh − (a− c)(nℓ − 1)

c− d
.

Agent i will stay with A if kℓ ≥ max{ (b−d)nh−(a−c)(nℓ−1)
c−d

, nℓ − 1}. Furthermore, one can check

that nh ≤ a−d
b−d

· nℓ − (a − d) if (b−d)nh−(a−c)(nℓ−1)
c−d

≤ nℓ − 1. Thus, we have that kℓ > nℓ − 1 if

nh ≤ a−d
b−d

· nℓ − (a− d) and kℓ ≥ (b−d)nh−(a−c)(nℓ−1)
c−d

if nh >
a−d
b−d

· nℓ − (a− d).

12If b−d
a−d ·nh > nℓ−1, then nh > a−d

b−d ·nℓ−(a−d). Thus, we have that kℓ ≤ nℓ−1 which contradicts kℓ ≥ b−d
a−d ·nh.

In this case, inequality (9) does not hold. This implies that agent i will deviate.

25



Summary up, agent i will stay with A if

kℓ ≥


b−d
a−d

· nh, if nh ≤ a−d
b−d

· nℓ − (a− d).

(b−d)nh−(a−c)(nℓ−1)
c−d

, if nh >
a−d
b−d

· nℓ − (a− d).

(10)

Similarly, we solve inequality (8) by considering various ranges of kh.

i) if kh ≤ nh − 1 < nℓ, we have

b · kh + d · (kh − kh) ≥ a · kh + c · (kh − kh) ⇒ b · kh ≥ a · kh ⇒ b ≥ a

which is consistent with the order of payoffs in the coordination game. Thus, agent j will stay with

B.

ii) if nh − 1 < kh < nℓ, we have

b · (nh − 1) + d · (kh − (nh − 1)) ≥ a · kh + c · (kh − kh) ⇒ kh ≤ b− d

a− d
· (nh − 1).

Agent j will stay with B if kh ≤ min{ b−d
a−d

· (nh − 1), nℓ}. Moreover, we obtain that nh <
a−d
b−d

·

nℓ+(b−d) from b−d
a−d

·(nh−1) < nℓ. Thus, we have that kh ≤ b−d
a−d

·(nh−1) if nh <
a−d
b−d

·nℓ+(b−d)

and kh < nℓ if nh ≥ a−d
b−d

· nℓ + (b− d).

iii) if nh − 1 < nℓ ≤ kh, we have

b·(nh−1)+d·(kh−(nh−1)) ≥ a·nℓ+c·(kh−nℓ) ⇒ kh ≤ (b− d)(nh − 1)− (a− c)nℓ

c− d
. (11)

Inequality (11) has solution if and only if (b−d)(nh−1)−(a−c)nℓ

c−d
≥ nℓ.13 Furthermore, we have that

nh ≥ a−d
b−d

· nℓ + (b − d) if (b−d)(nh−1)−(a−c)nℓ

c−d
≥ nℓ. Thus, agent j will stay with B if nℓ ≤ kh ≤

(b−d)(nh−1)−(a−c)nℓ

c−d
, in the case where nh ≥ a−d

b−d
· nℓ + (b− d).

13If (b−d)(nh−1)−(a−c)nℓ

c−d < nℓ, then nh < a−d
b−d ·nℓ+(b− d). Thus, we have that kh ≤ (b−d)(nh−1)−(a−c)nℓ

c−d which
contradicts kh ≥ nℓ . In this case, inequality (11) does not have a solution, and agent j will deviate.

26



Summary up, agent j will stay with B if

kh ≤


b−d
a−d

· (nh − 1), if nh <
a−d
b−d

· nℓ + (b− d).

(b−d)(nh−1)−(a−c)nℓ

c−d
, if nh ≥ a−d

b−d
· nℓ + (b− d).

(12)

Note that equations (10) and (12) have to hold simultaneously in a Nash equilibrium. To find the

solution to these two equations, there are three sub-cases for the various ranges of nℓ and Nh.

First, consider the sub-case where nh ≤ a−d
b−d

· nℓ − (a− d). We have that agent i will stay with

A if kℓ ≥ b−d
a−d

· nh. As a−d
b−d

· nℓ − (a − d) < a−d
b−d

· nℓ + (b − d), we have agent j will stay with B

if and only if kh ≤ b−d
a−d

· (nh − 1). Therefore, the condition for both i and j staying in their action

is kh ≤ b−d
a−d

· (nh − 1) < b−d
a−d

· nh ≤ kℓ, which contradicts our assumption kℓ < kh. Thus, either

agent i or j will switch.

Next, consider the sub-case where a−d
b−d

·nℓ−(a−d) < nh <
a−d
b−d

·nℓ+(b−d). We have that agent

i will stay with A if kℓ ≤ (b−d)nh−(a−c)(nℓ−1)
c−d

and agent j will stay with B if kh ≤ b−d
a−d

· (nh − 1).

Since nh >
a−d
b−d

· nℓ − (a− d) and kℓ ≥ (b−d)nh−(a−c)(nℓ−1)
c−d

, we obtain that kℓ > nℓ − 1. And since

nh <
a−d
b−d

· nℓ + (b − d) and kh ≤ b−d
a−d

· (nh − 1), we have that kh < nℓ. Moreover, since nℓ is an

integer, kℓ ≥ nℓ − 1 implies that kℓ ≥ nℓ, and kh < nℓ implies that kh ≤ nℓ − 1. Thus, we have

that kh ≤ nℓ − 1 < nℓ ≤ kℓ, which contradicts kℓ < kh. Therefore, either agent i or j will deviate.

Finally, consider the sub-case where nh ≥ a−d
b−d

· nℓ + (b − d). We have that agent j will stay

with B if kh ≤ (b−d)(nh−1)−(a−c)nℓ

c−d
. As a−d

b−d
· nℓ + (b− d) > a−d

b−d
· nℓ − (a− d), from equation (10)

we find that agent i will stay with A if and only if kℓ ≥ (b−d)nh−(a−c)(nℓ−1)
c−d

. Thus, the condition for

both agents staying in their actions is kℓ ≥ (b−d)nh−(a−c)(nℓ−1)
c−d

> (b−d)(nh−1)−(a−c)nℓ

c−d
≥ kh, which

contradicts kℓ < kh. Therefore, either agent i or j will switch in this sub-case.

Consequently, there does not exist any nℓ and nh such that both agents i and j stay with their

actions, i.e. either i or j will deviate. Thus, s ∈
−→
AB is not a Nash equilibrium.

Proof of Lemma 4. Note that the distribution of actions in a strategy profile s ∈
−→
BA is (nh, nℓ).

Consider two agents i ∈ Nℓ and j ∈ Nh. Note that agent i is playing action B and agent j is

playing action A. As s is a Nash equilibrium, neither i nor j will deviate from their current actions.
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First, consider agent i. She will stay with B if and only if

vi(B, nh) = b ·min{kℓ, nℓ − 1}+ d · (kℓ −min{kℓ, nℓ − 1})−M · kℓ

≥ a ·min{kℓ, nh}+ c · (kℓ −min{kℓ, nh})−M · kℓ = vi(A, nh + 1).
(13)

Similarly, agent j will stay with A if and only if

vj(A, nh) = a ·min{kh, nh − 1}+ c · (kh −min{kh, nh − 1})−M · kh

≥ b ·min{kh, nℓ}+ d · (kh −min{kh, nℓ})−M · kh = vj(B, nh − 1).
(14)

Note that in a Nash equilibrium, inequalities (13) and (14) have to hold simultaneously. First, we

solve inequalities (13) to obtain switching thresholds for agent i. There are three sub-cases by

considering various orders of kℓ, nℓ − 1, and nh.

i) if kℓ ≤ nh < nℓ − 1, we have

b · kℓ + d · (kℓ − kℓ) ≥ a · kℓ + c · (kℓ − kℓ) ⇒ b · kℓ ≥ a · kℓ ⇒ b ≥ a

which coincides with the order of payoffs in the coordination game. Thus, agent i will stay.

ii) if nh < kℓ ≤ nℓ − 1, we have

b · kℓ + d · (kℓ − kℓ) ≥ a · nh + c · (kℓ − nh) ⇒ kℓ ≥ a− c

b− c
· nh.

Note that a−c
b−c

·nh < nh holds as a− c < b− c. Following that, we have kℓ > a−c
b−c

·nh whenever

nh < kℓ ≤ nℓ − 1. Thus, inequality (13) holds in the relevant range of kℓ. This implies that agent i

will stay with action B whenever nh < kℓ ≤ nℓ − 1.

iii) if nh ≤ nℓ − 1 < kℓ, we have

b ·(nℓ−1)+d ·(kℓ−(nℓ−1)) ≥ a ·nh+c ·(kℓ−nh) ⇒ kℓ ≤ (b− d)(nℓ − 1)− (a− c)nh

c− d
= kℓ.

One can check that kℓ > (nℓ − 1).14 Thus, inequality (13) holds if and only if nℓ − 1 < kℓ ≤ kℓ

14 This is obtained by considering (b−d)(nℓ−1)−(a−c)nh

c−d − (nℓ − 1) = (b−d)(nℓ−1)−(a−c)nh−(c−d)(nℓ−1)
c−d =

(b−c)(nℓ−1)−(a−c)nh

c−d ≥ (b−c)nh−(a−c)nh

c−d > 0.
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and agent i will stay with B in the relevant range. As we have seen in cases i) and ii), agents will

stay with B if kℓ ≤ nh < nℓ− 1 and nh < kℓ ≤ nℓ− 1. Combining these results with the condition

obtained in case iii) yields that agent i will stay with action B if and only if kℓ ≤ kℓ.

Now, consider agent j. Similarly, we solve inequality (14) by considering different orders of

kh, nh − 1 and nℓ.

i) if kh ≤ nh − 1 < nℓ, we have

a · kh + c · (kh − kh) ≥ b · kh + d · (kh − kh) ⇒ a · kh ≥ b · kh ⇒ a ≥ b

which contradicts the order of payoffs b > a. Thus, agent j will deviate.

ii) if nh − 1 < kh < nℓ, we have

a · (nh − 1) + c · (kh − (nh − 1)) ≥ b · kh + d · (kh − kh) ⇒ kh ≤ a− c

b− c
· (nh − 1).

Note that a−c
b−c

·(nh−1) < nh−1 holds since b > a. There is a contradiction between kh > nh−1

and kh ≤ a−c
b−c

· (nh − 1). This implies that inequality (14) does not hold and agent j will deviate in

this range.

iii) if nh − 1 < nℓ ≤ kh, we have

a·(nh−1)+c·(kh−(nh−1)) ≥ b·nℓ+d·(kh−nℓ) ⇒ kh ≥ (b− d)nℓ − (a− c)(nh − 1)

c− d
= kh.

Note that kh > nℓ.15 Thus, agent j will stay with action A if and only if kh ≥ kh. Attending the

results in cases i) and ii), agents will stay with B if kh ≤ nh − 1 < nℓ and nh − 1 < kh ≤ nℓ.

Combining these results with the condition obtained in case iii) yields that agent j will stay with

action A if and only if kh ≥ kh.

Consequently, for both agents i and j to stay with their current actions requires that kℓ ≤ kℓ

and kh ≥ kh. Furthermore, if both kℓ ≤ kℓ and kh ≥ kh hold, then both agents i and j with stay

with their current actions.
15This is obtained by considering (b−d)nℓ−(a−c)(nh−1)

c−d − nℓ = (b−d)nℓ−(a−c)(nh−1)−(c−d)nℓ

c−d =
(b−c)nℓ−(a−c)(nh−1)

c−d > (b−c)nh−(a−c)nh+(a−c)
c−d > 0.
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A.2 Proofs of Section 4

Proof of Proposition 5.1. This proof proceeds in two steps. In the first step, we prove that from

any state s, the dynamics leads to a monomorphic or polymorphic state, i.e. a state s′ ∈
−→
AA∪

−−→
BB∪

−→
AB ∪

−→
BA, with a positive probability. In the second step, we show that from each state s′, this

process converges to a Nash equilibrium.

We prove the first step by constructing a sequence of revisions leading to a monomorphic or

polymorphic state from any state s. This sequence of revisions consists of multiple rounds where

in each round, one of the two groups is selected and all agents in this selected group can revise

their strategies.16 Moreover, we assume that if agents are indifferent between two actions, they will

remain with their current actions.17

Consider an initial state s with distribution of actions (m,n −m). In the first round, give the

revision opportunity to agents in Nℓ. Consider the case where A-agents in Nℓ remain. This implies

that v(A,m) ≥ v(B,m− 1), i.e. m ≥ M1
ℓ (or m ≥ M2

ℓ ). Table 1 reveals that for any B-agents in

Nℓ, the optimal choice is to switch. Thus, we have reached a state where all agents inNℓ play action

A. Now, consider the case where A-agents in Nℓ switch. This implies that v(B,m−1) > v(A,m),

i.e. m < M1
ℓ (or m < M2

ℓ ). This implies that m ≤ M1
ℓ − 1 (or m ≤ M2

ℓ − 1), and furthermore,

v(A,m+ 1) ≤ v(B,m). Thus, B-agents will remain and we have reached a state where all agents

in Nℓ play action B.

In the second round, give the revision opportunity to agents in Nh. Assume that the distribution

of actions is (m′, n−m′) after agents in Nℓ have revised. Agents in Nh decide whether to remain

or to switch based on this new distribution of actions. Following similar arguments as for those

agents in Nℓ, we will arrive at a state where all agents in Nh play the same action A or B.

Consequently, after two rounds of revisions, we have reached a state where agents in the same

group play the same action, i.e. a state s′ ∈
−→
AA ∪

−−→
BB ∪

−→
AB ∪

−→
BA.

In the second step, we show this process will converge to a Nash equilibrium from any state s′.

First, consider any state s′ ∈
−→
AA∪

−−→
BB. If all agents play action A (and also B), no one will switch

since vi(A, n) > vi(B, n− 1),∀i ∈ N (and since vi(B, 0) > vi(A, 1)).

16This sequence occurs with positive probability since the probability of each agent receiving the revision opportu-
nity is positive.

17Note that since agents randomize between two actions when they are indifferent, the probability of their remains
is positive.
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Now consider a state s′ ∈
−→
AB. If agents in Nℓ find it optimal to play action A, then we have

that vi(A, nℓ) > vi(B, nℓ − 1),∀i ∈ Nℓ, which implies that nℓ ≥ M1
ℓ (or nℓ ≥ M2

ℓ ). Note that

M2
ℓ > M2

h and M1
ℓ > M1

h holds (see in Table 1). We thus obtain that nℓ > M1
h (or nℓ > M2

h).

Table 1 reveals that it is optimal for B-agents in Nh to switch to A. Similarly, one can check that if

agents in Nh find it optimal to play action B, then it is optimal for A-agents in Nℓ to switch to B.

Thus, we will arrive at a state s ∈
−→
AA ∪

−−→
BB.

Then, consider a state s′ ∈
−→
BA. In the proof of Lemma 4 we have argued that it is optimal

for agents in Nℓ to play B and for agents in Nh to play A iff kℓ ≤ kℓ and kh ≥ kh. This implies

that whenever kℓ < kℓ and kh > kh, agents will strictly prefer to remain at their actions when they

receive the revision opportunity. It follows that if kℓ ≥ kℓ, agents in Nℓ will find it optimal to play

A and switch. Similarly, if kh ≤ kh, agents in Nh will find it optimal to play B and switch. Then

we will reach a state s ∈
−→
AA ∪

−−→
BB.

Consequently, this process will finally converge to a state s ∈
−→
AA ∪

−−→
BB ∪

−→
BA if kℓ < kℓ and

kh > kh, and will converge to a state s ∈
−→
AA ∪

−−→
BB otherwise. According to Proposition 4.1, s is

a Nash equilibrium for the relevant ranges of kℓ and kh.

Now, we proceed to show that this process moves between any pair of states s and s′ in
−→
AA

(and also for any pair in
−−→
BB and

−→
BA) with positive probability. Note that s and s′ only differ in the

linking strategies of agents. As agents are indifferent between linking to any of those agents with

the same action, this process will move between any such two strategies with a positive probability.

Thus, all states in
−→
AA ( also in

−−→
BB and

−→
BA) form an absorbing set.18

A.3 Proofs of Section 5

Proof of Proposition 5.2. First, note that if kℓ ≥ kℓ or kh ≤ kh,
−→
AA and

−−→
BB are the only two

absorbing sets.

First, consider the transition from
−→
AA to

−−→
BB.

Note that A-agents with the lower constraint kℓ require fewer mutations to switch than agents

with the higher constraint kh. To find the minimum number of mutations required for this transition,

we thus start with agents in Nℓ. Denote by n−mAB
ℓ the minimum number of B-agents required for

18The discussion regarding states in
−−→
BA is consistently established on the condition kℓ < kℓ and kh > kh.
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the successful transition of agents inNℓ. Consequently, mAB
ℓ is the maximum number of remaining

A-agents.

First, note that A-agents with the lower constraint will always switch if mAB
ℓ ≤ n − kℓ. Since

that mAB
ℓ ≤ n− kℓ implies kℓ ≤ n−mAB

ℓ , the number of B-agents is sufficient such that A-agents

can fill all their slots with B-agents. Thus, we now turn to the case where mAB
ℓ > n − kℓ, i.e.

the number of B-agents is insufficient such that A-agents cannot fill all their slots with B-agents.

We now need to determine the payoff A-agents get when they stay with A. Hence we need to

distinguish two sub-cases: i)A-agents can fill all their slots with otherA-agents, i.e.mAB
ℓ ≥ kℓ+1,

and ii) A-agents have to link to both A- and B-agents, i.e. mAB
ℓ < kℓ + 1.

Consider sub-case i). According to Table 1, the switching threshold for A-agents is mAB
ℓ =

⌊M2
ℓ ⌋. Observe now that this sub-case will happen if indeed mAB

ℓ = ⌊M2
ℓ ⌋ ≥ kℓ + 1. Attending to

the definition of M2
ℓ and solving for kℓ, we have that kℓ ≤ (n−1)(b−d)

a+b−2d
.

Now, consider sub-case ii). According to Table 1, the switching threshold for A-agents in this

sub-case is given by mAB
ℓ = ⌊M1

ℓ ⌋. Solving for kℓ yields kℓ > (n−1)(b−d)
a+b−2d

.

Recall that if there are n − kℓ or less A-agents, all agents in Nℓ will switch to B. Thus, the

maximum number of A-agents for the transition to occur is characterized by

mAB
ℓ =

max{⌊M2
ℓ ⌋ , n− kℓ}, if kℓ ≤ (n−1)(b−d)

a+b−2d
.

max{⌊M1
ℓ ⌋ , n− kℓ}, if kℓ > (n−1)(b−d)

a+b−2d
.

One can check that ⌊M2
ℓ ⌋ > n − kℓ always holds for any kℓ, and ⌊M1

ℓ ⌋ > n − kℓ holds whenever

kℓ > (n−1)(a−c)
a+b−2c

. Since (n−1)(a−c)
a+b−2c

< (n−1)(b−d)
a+b−2d

, we thus have

mAB
ℓ =

⌊M2
ℓ ⌋ , if kℓ ≤ (n−1)(b−d)

a+b−2d
.

⌊M1
ℓ ⌋ , if kℓ > (n−1)(b−d)

a+b−2d
.

Therefore, the minimum number of mutations required for the transition of A-agents in Nℓ is

n−mAB
ℓ =

n− ⌊M2
ℓ ⌋ , if kℓ ≤ (n−1)(b−d)

a+b−2d
.

n− ⌊M1
ℓ ⌋ , if kℓ > (n−1)(b−d)

a+b−2d
.
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Now, we assess the largest number of B-agents after the mutations and switches (excluding

switches among agents in Nh for now), i.e. agents who have mutated and agents in Nℓ who have

switched to B. For this, assume all mutations occur in Nh. Thus, the number of B-agents is

nℓ + n−mAB
ℓ . It follows that the number of remaining A-agents in Nh is mAB

ℓ − nℓ. We have that

mAB
ℓ − nℓ < nh holds for any relevant range of kℓ since the mutations occur among Nh and every

agent in Nℓ switched.

Now consider agents in Nh. First, denote by mAB
h the number of A-agents required for agents

in Nh to switch. Following the same argument as for agents in Nℓ, attending to Table 1 reveals that

mAB
h is given by

mAB
h =

⌊M2
h⌋ , if kh ≤ (n−1)(b−d)

a+b−2d
.

⌊M1
h⌋ , if kh > (n−1)(b−d)

a+b−2d
.

If the number of A-agents mAB
ℓ − nℓ is less than mAB

h , then agents in Nh switch without requiring

more mutations. Otherwise, extra mutations are needed for their transition.

First, consider the case where kh ≤ (n−1)(b−d)
a+b−2d

. One can check that ⌊M2
h⌋ > nh holds. Thus, we

have that mAB
ℓ − nℓ < ⌊M2

h⌋, i.e. the number of existing A-agents is smaller than the number of

A-agents required for the transition. Therefore, the number of B-agents is sufficient for A-agents

in Nh to switch.

Next, consider the case where (n−1)(b−d)
a+b−2d

< kh ≤ kh. We have that ⌊M1
h⌋ ≥ nh holds. This

implies that no extra mutation is required for A-agents in Nh to switch.

Now, consider the case where kh > kh. We have that ⌊M1
h⌋ < nh. Recall that we are now

focusing on the case where there are only two absorbing sets. Thus, the range of kℓ is restricted

on kℓ ≥ kℓ whenever kh > kh. One can check that mAB
ℓ − nℓ ≤ 0 if kℓ ≥ kℓ. Note that if

mAB
ℓ − nℓ ≤ 0, all agents are now playing B and we have reached

−−→
BB.

Combining the results of all three cases, the number of B-agents after mutations and switches

among Nℓ is sufficient for agents in Nh to switch. Denote by n − mAB the minimum number of
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B-agents for the transition among Nℓ and Nh. In summary, we have that

n−mAB =


n− ⌊M2

ℓ ⌋ , if kℓ ≤ (n−1)(b−d)
a+b−2d

, kh ≤ (b−d)nℓ−(a−c)(nh−1)
(c−d)

.

n− ⌊M1
ℓ ⌋ , if kℓ > (n−1)(b−d)

a+b−2d
, kh ≤ (b−d)nℓ−(a−c)(nh−1)

(c−d)
.

n− ⌊M1
ℓ ⌋ , if kℓ ≥ (b−d)(nℓ−1)−(a−c)nh

(c−d)
, kh > (b−d)nℓ−(a−c)(nh−1)

(c−d)
.

(15)

Since there are only two absorbing sets, we have that the stochastic potential of
−−→
BB is given by

r(
−→
AA,

−−→
BB) = n−mAB.

Second, consider the transition from
−−→
BB to

−→
AA.

Note that fewer mutations are required for B-agents with the higher constraint to switch. Thus,

to obtain the minimum number of mutations required for this transition, we start with agents in the

high-constraint group. Denote by mBA
h the minimum number of mutations required for B-agents

in Nh to switch.

Whenever mBA
h ≤ n− kh − 1, B-agents in Nh will always stay since there are sufficient other

B-agents for them to link to. Thus, we turn to the case where mBA
h > n − kh − 1, i.e. B-agents

have to link to both A- and B-agents. Now we have to determine the payoff B-agents get when

they switch to A. Thus, we have to consider two sub-cases: i) A-agents have to link to both A-

and B-agents after they switch, i.e. mBA
h < kh, and ii) A-agents can fill all their slots with other

A-agents, i.e. mBA
h ≥ kh.

In sub-case i), the switching threshold for B-agents is given by mBA
h = ⌈M1

h⌉ − 1 according to

Table 1. Solving ⌈M1
h⌉ − 1 < kh yields that kh ≥ (b−d)n

a+b−2d
+ a−c

a+b−2d
.

In sub-case ii), the switching threshold for B-agents is mBA
h = ⌈M2

h⌉ − 1 according to Table 1.

Then by solving ⌈M2
h⌉ − 1 ≥ kh, we obtain that kh < (b−d)n

a+b−2d
.19

It remains to be classified what happens in the range kh ∈
[

(b−d)n
a+b−2d

, (b−d)n
a+b−2d

+ a−c
a+b−2d

)
. Assume

that mBA
h < kh. Since the number of A-agents is less than the constraint, A-agents will have

to link to both A- and B-agents. Attending Table 1 reveals that for B-agents to switch requires

19Note that kh is a positive integer. If kh >
⌈
M1

h

⌉
−1, then kh ≥ M1

h . Similarly, if kh ≤
⌈
M2

h

⌉
−1, then kh < M2

h .
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that mBA
h ≥ ⌈M1

h⌉ − 1, which can in turn be written as kh ≥ (b−d)n
a+b−2d

+ a−c
a+b−2d

. This lies out

of our interval, yielding a contradiction. Thus, we consider mBA
h ≥ kh. Now observe that for

mBA
h = kh, we have that vi(A, kh + 1) ≥ vi(B, k

h) holds, provided that kh ≥ (n−1)(b−d)
a+b−2d

. Because

kh ∈
[

(b−d)n
a+b−2d

, (b−d)n
a+b−2d

+ a−c
a+b−2d

)
, exactly kh mutation are sufficient for the transition in this range.

In summary, we have that

mBA
h =


⌈M2

h⌉ − 1 if kh < n(b−d)
a+b−2d

.

kh if kh ∈
[

n(b−d)
a+b−2d

, n(b−d)+(a−c)
a+b−2d

)
.

⌈M1
h⌉ − 1 if kh ≥ n(b−d)+(a−c)

a+b−2d
.

(16)

Now, observe that kh = ⌈M2
h⌉ − 1 if kh < M2

h ≤ kh + 1. This holds for (n−1)(b−d)
a+b−2d

≤ kh <

n(b−d)
a+b−2d

. Similarly, we find that kh = ⌈M1
h⌉ − 1 if kh < M1

h ≤ kh + 1 which can in turn be written

as kh ∈ [ (n−1)(b−d)
a+b−2d

, n(b−d)
a+b−2d

+ (a−c)
a+b−2d

). Thus, the equation (16) is equivalent to

mBA
h =

⌈M2
h⌉ − 1 if kh < (n−1)(b−d)

a+b−2d
.

⌈M1
h⌉ − 1 if kh ≥ (n−1)(b−d)

a+b−2d
.

(17)

Moreover, we find that ⌈M2
h⌉ − 1 > n− kh − 1 holds for any kh, and ⌈M1

h⌉ − 1 > n− kh − 1

Whenever kh > (n−1)(a−c)
a+b−2c

. As (n−1)(a−c)
a+b−2c

< (n−1)(b−d)
a+b−2d

, equation (17) is true in the relevant range of

kh.

Now, denote by mBA the minimum number of mutations for agents among both Nℓ and Nh

to switch. To maximize the impact of the mutations, assume that all mutations occur in the low-

constraint group Nℓ. Thus, after all B-agents in Nh have switched, the maximum number of A-

agents is min{n,mBA
h +nh}. It follows that the minimum number of B-agents now is max{0, nℓ−

mBA
h }. If nℓ − mBA

h ≤ 0, i.e. if there are no B-agents, then we have reached
−→
AA and no extra

mutations are required. Thus, we have mBA = mBA
h for the relevant range of kh.

Consider the case where there are stillmBA
h +nh A-agents left after the mutation and switch, i.e.

nℓ−mBA
h > 0. Now, we have to determine whether the number ofA-agents is enough forB-agents

in Nℓ to switch. Following the same argument as above, the switching threshold for B-agents in
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Nℓ is given by

mBA
ℓ =

⌈M2
ℓ ⌉ − 1 if kℓ < (n−1)(b−d)

a+b−2d
.

⌈M1
ℓ ⌉ − 1 if kℓ ≥ (n−1)(b−d)

a+b−2d
.

where mBA
ℓ is the minimum number of A-agents required for agents in Nℓ to switch to A. It

follows that if mBA
h + nh > mBA

ℓ , then no extra mutation are required for this transition. If

mBA
h + nh ≤ mBA

ℓ , an additional mBA
ℓ − (mBA

h + nh) mutations are needed. Then total number of

mutations is mBA
ℓ − nh. In summary, the minimum number of mutations required is

mBA = max{mBA
h ,mBA

ℓ − nh} (18)

Since there are only two absorbing sets, we have that the stochastic potential of
−−→
BB for the relevant

ranges of kℓ and kh is given by

r(
−−→
BB,

−→
AA) = mBA.

Having characterized the stochastic potentials of the absorbing sets, we now proceed to identify

the set of stochastically stable states S⋆⋆⋆ for the various ranges of kℓ and kh. Denote by ∆(kℓ, kh)

the difference between the stochastic potentials of
−−→
BB and

−→
AA, i.e. ∆(kℓ, kh) = r(

−→
AA,

−−→
BB) −

r(
−−→
BB,

−→
AA). If ∆(kℓ, kh) > 0, then S⋆⋆⋆ =

−→
AA; if ∆(kℓ, kh) = 0, then S⋆⋆⋆ =

−→
AA ∪

−−→
BB, and if

∆(kℓ, kh) < 0, then S⋆⋆⋆ =
−−→
BB.

First, consider the case where kℓ < kh < (n−1)(b−d)
a+b−2d

. We have obtained above that r(
−−→
BB,

−→
AA) =

max{⌈M2
h⌉ − 1, ⌈M2

ℓ ⌉ − 1 − nh} and r(
−→
AA,

−−→
BB) = n − ⌊M2

ℓ ⌋ for the relevant ranges of kℓ and

kh. Thus, we have that

∆(kℓ, kh) = min{n−
⌊
M2

ℓ

⌋
−

⌈
M2

h

⌉
+ 1, n+ nh + 1−

⌊
M2

ℓ

⌋
−
⌈
M2

ℓ

⌉
}

= min{
⌈
a− d

b− d
· kℓ

⌉
+

⌊
a− d

b− d
· kh

⌋
− n+ 1,

⌈
a− d

b− d
· kℓ

⌉
+

⌊
a− d

b− d
· kℓ

⌋
− nℓ + 1}.

One can check that n−⌊M2
ℓ ⌋−⌊M2

h⌋+1 < 0 holds whenever kℓ < kh < (n−1)(b−d)
a+b−2d

, which implies

that ∆(kℓ, kh) < 0. Thus, S⋆⋆⋆ =
−−→
BB. In this case, the two thresholds in the proposition are given
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by kℓ = kℓ = (n−1)(b−d)
a+b−2d

.

Second, consider the case where kℓ ≤ (n−1)(b−d)
a+b−2d

≤ kh ≤ kh. We have that r(
−−→
BB,

−→
AA) =

max{⌈M1
h⌉ − 1, ⌈M2

ℓ ⌉ − 1− nh}, and r(
−→
AA,

−−→
BB) = n− ⌊M2

ℓ ⌋. Thus,

∆(kℓ, kh) = min{n−
⌊
M2

ℓ

⌋
−

⌈
M1

h

⌉
+ 1, n+ nh + 1−

⌊
M2

ℓ

⌋
−
⌈
M2

ℓ

⌉
}

= min{
⌈
a− d

b− d
· kℓ

⌉
+

⌊
kh(c− d)− (n− 1)(b− d)

a+ b− c− d

⌋
,

⌈
a− d

b− d
· kℓ

⌉
+

⌊
a− d

b− d
· kℓ

⌋
− nℓ + 1}

:= min{ϕ(kℓ, kh), ψ(kℓ, kh)}.

Given that b > a > c > d, ∆(kℓ, kh) is weakly increasing in both kℓ and kh. Thus, ∆(kℓ, kh)

obtains its minimum at the boundary where kℓ = 1 and kh = (n−1)(b−d)
a+b−2d

. At this point, we have that

ϕ(1,
(n− 1)(b− d)

a+ b− 2d
) =

⌈
a− d

b− d

⌉
−
⌊
(n− 1)(b− d)

a+ b− 2d

⌋
≤ 0;

ψ(1,
(n− 1)(b− d)

a+ b− 2d
) = 2− nℓ ≤ 0.

Thus, we have that ∆(1, (n−1)(b−d)
a+b−2d

) ≤ 0. 20 When n is sufficiently large, we have that ∆(1, (n−1)(b−d)
a+b−2d

)

is strictly negative.

We now assess the maximum of ∆(kℓ, kh), which is obtained at the boundary where kℓ =

(n−1)(b−d)
a+b−2d

and kh = kh. We have that

ϕ(
(n− 1)(b− d)

a+ b− 2d
, kh) =

⌈
nℓ −

(n− 1)(b− d)

a+ b− 2d

⌉
;

ψ(
(n− 1)(b− d)

a+ b− 2d
, kh) =

⌈
(n− 1)(a− d)

a+ b− 2d

⌉
+

⌊
(n− 1)(a− d)

a+ b− 2d

⌋
− nℓ + 1.

We find that ϕ( (n−1)(b−d)
a+b−2d

, kh) = 0 if (n−1)(b−d)
a+b−2d

− 1 < nℓ ≤ (n−1)(b−d)
a+b−2d

. Thus, we have that

ϕ( (n−1)(b−d)
a+b−2d

, kh) < 0 holds whenever nℓ ≤ (n−1)(b−d)
a+b−2d

− 1 and ϕ( (n−1)(b−d)
a+b−2d

, kh) > 0 holds when-

ever nℓ >
(n−1)(b−d)
a+b−2d

. Similarly, we find that ψ( (n−1)(b−d)
a+b−2d

, kh) = 0 whenever 2(n−1)(a−d)
a+b−2d

≤ nℓ <

2(n−1)(a−d)
a+b−2d

+ 2. Thus, we have that ψ( (n−1)(b−d)
a+b−2d

, kh) < 0 holds whenever nℓ ≥ 2(n−1)(b−d)
a+b−2d

+ 2 and

20Notice that ∆(1, (n−1)(b−d)
a+b−2d ) = 0 hold if and only if n = 3 and nℓ = 2, otherwise, ∆(1, (n−1)(b−d)

a+b−2d ) < 0.

Furthermore, note that when n = 3 and nℓ = 2, we have that kℓ = 1 and kh = 2. The transition from
−→
AA to−−→

BB requires one mutation and the transition from
−−→
BB to

−→
AA requires two mutations. Thus,

−−→
BB is the unique set of

stochastically stable states. Thus, in the main context, we only discuss the case when n is sufficiently large.
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ψ( (n−1)(b−d)
a+b−2d

, kh) > 0 holds whenever nℓ <
2(n−1)(b−d)

a+b−2d
. In summary, we have that


∆( (n−1)(b−d)

a+b−2d
, kh) < 0 if nℓ ∈ (2, (n−1)(b−d)

a+b−2d
− 1] ∪ [2(n−1)(a−d)

a+b−2d
+ 2, n− 1);

∆( (n−1)(b−d)
a+b−2d

, kh) = 0 if nℓ ∈ ( (n−1)(b−d)
a+b−2d

− 1, (n−1)(b−d)
a+b−2d

] ∪ [2(n−1)(a−d)
a+b−2d

, 2(n−1)(a−d)
a+b−2d

+ 2);

∆( (n−1)(b−d)
a+b−2d

, kh) > 0 if nℓ ∈ ( (n−1)(b−d)
a+b−2d

, 2(n−1)(a−d)
a+b−2d

).

Consequently, whenever nℓ ∈ (2, (n−1)(b−d)
a+b−2d

−1]∪[2(n−1)(a−d)
a+b−2d

+2, n−1), we have that ∆(kℓ, kh) < 0

for any kℓ and kh in the relevant ranges , which implies that S⋆⋆⋆ =
−−→
BB. In this case, the two

thresholds in the proposition are given by kℓ = kℓ = (n−1)(b−d)
a+b−2d

.

It follows that if nℓ ∈ ( (n−1)(b−d)
a+b−2d

− 1, (n−1)(b−d)
a+b−2d

] ∪ [2(n−1)(a−d)
a+b−2d

, 2(n−1)(a−d)
a+b−2d

+ 2), we have that

∆(kℓ, kh) = 0 holds if and only if kℓ = (n−1)(b−d)
a+b−2d

and kh = kh, which implies S⋆⋆⋆ =
−−→
BB ∪

−→
AA.

Furthermore, we have that ∆(kℓ, kh) < 0 for any pair of kℓ and kh such that kℓ < (n−1)(b−d)
a+b−2d

≤

kh < kh, which implies that S⋆⋆⋆ =
−−→
BB. The two thresholds in this case are thus given by

kℓ = kℓ = (n−1)(b−d)
a+b−2d

.

Moreover, if nℓ ∈ ( (n−1)(b−d)
a+b−2d

, 2(n−1)(a−d)
a+b−2d

), we have that the maximum of ∆(kℓ, kh) is positive,

i.e. ∆( (n−1)(b−d)
a+b−2d

, kh) > 0 and the minimum is negative, i.e. ∆(1, (n−1)(b−d)
a+b−2d

) < 0. Thus, for each

kh ∈ [ (n−1)(b−d)
a+b−2d

, kh), there exists a corresponding interval of kℓ, such that for any kℓ in this interval

we have that ∆(kℓ, kh) = 0. Note that ∆(kℓ, kh) is weakly increasing in both kℓ and kh. We have

that ∆(kℓ, kh) < 0 if kℓ falls below this interval and ∆(kℓ, kh) > 0 if kℓ falls above. Therefore, for

each kh ∈ [ (n−1)(b−d)
a+b−2d

, kh), we have that

S⋆⋆⋆ =



−−→
BB, if kℓ < kℓ.

−−→
BB ∪

−→
AA, if kℓ ∈ [kℓ, kℓ].

−→
AA, if kℓ > kℓ.

where kℓ and kℓ are the two thresholds which are given by the upper and lower boundaries of this

interval respectively.

Now, consider the case where (n−1)(b−d)
a+b−2d

< kℓ < kh ≤ kh. we have that r(
−−→
BB,

−→
AA) =
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max{⌈M1
h⌉ − 1, ⌈M1

ℓ ⌉ − 1− nh}, and r(
−→
AA,

−−→
BB) = n− ⌊M1

ℓ ⌋. Thus,

∆(kℓ, kh) = min{n−
⌊
M1

ℓ

⌋
−

⌈
M1

h

⌉
+ 1, n+ nh + 1−

⌊
M1

ℓ

⌋
−
⌈
M1

ℓ

⌉
}

= min{n+

⌈
kℓ(c− d)− (n− 1)(b− d)

a+ b− c− d

⌉
+

⌊
kh(c− d)− (n− 1)(b− d)

a+ b− c− d

⌋
− 1,

n+ nh +

⌈
kℓ(c− d)− (n− 1)(b− d)

a+ b− c− d

⌉
+

⌊
kℓ(c− d)− (n− 1)(b− d)

a+ b− c− d

⌋
− 1}

:= min{ϕ(kℓ, kh), ψ(kℓ, kh)}.

As above, ∆(kℓ, kh) is weakly increasing in both kℓ and kh. Thus, ∆( (n−1)(b−d)
a+b−2d

, (n−1)(b−d)
a+b−2d

) <

∆(kℓ, kh) < ∆(kh, kh). One can check that ∆(kh, kh) > 0 hold since both ϕ(kh, kh) and ψ(kh, kh)

are strictly positive. We now assess the sign of ∆( (n−1)(b−d)
a+b−2d

, (n−1)(b−d)
a+b−2d

). Note that ∆( (n−1)(b−d)
a+b−2d

, (n−1)(b−d)
a+b−2d

) =

min{ϕ( (n−1)(b−d)
a+b−2d

, (n−1)(b−d)
a+b−2d

), ψ( (n−1)(b−d)
a+b−2d

, (n−1)(b−d)
a+b−2d

)} where

ϕ(
(n− 1)(b− d)

a+ b− 2d
,
(n− 1)(b− d)

a+ b− 2d
) = n−

⌈
(n− 1)(b− d)

a+ b− 2d

⌉
−
⌊
(n− 1)(b− d)

a+ b− 2d

⌋
− 1 < 0.

and

ψ(
(n− 1)(b− d)

a+ b− 2d
,
(n− 1)(b− d)

a+ b− 2d
) = n+ nh −

⌈
(n− 1)(b− d)

a+ b− 2d

⌉
−
⌊
(n− 1)(b− d)

a+ b− 2d

⌋
− 1.

Since ϕ( (n−1)(b−d)
a+b−2d

, (n−1)(b−d)
a+b−2d

) < 0 holds, we have that ∆( (n−1)(b−d)
a+b−2d

, (n−1)(b−d)
a+b−2d

) < 0. Thus, for

each kh ∈ ( (n−1)(b−d)
a+b−2d

, kh], there exists a corresponding interval of kℓ, such that for any kℓ in this

interval we have ∆(kℓ, kh) = 0. As above, We have that ∆(kℓ, kh) < 0 if kℓ falls below this interval

and ∆(kℓ, kh) > 0 if kℓ falls above. Therefore, for each kh ∈ ( (n−1)(b−d)
a+b−2d

, kh], we have that

S⋆⋆⋆ =



−−→
BB, if kℓ < kℓ.

−−→
BB ∪

−→
AA, if kℓ ∈ [kℓ, kℓ].

−→
AA, if kℓ > kℓ.

where kℓ and kℓ are the two thresholds which are given by the upper and lower boundaries of this

interval respectively.
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Finally, consider the case where kℓ ≥ kℓ and kh > kh. In this case, we also have that

r(
−−→
BB,

−→
AA) = max{⌈M1

h⌉ − 1, ⌈M1
ℓ ⌉ − 1− nh}, and r(

−→
AA,

−−→
BB) = n− ⌊M1

ℓ ⌋. Thus,

∆(kℓ, kh) = min{n−
⌊
M1

ℓ

⌋
−

⌈
M1

h

⌉
+ 1, n+ nh + 1−

⌊
M1

ℓ

⌋
−
⌈
M1

ℓ

⌉
}

= min{n+

⌈
kℓ(c− d)− (n− 1)(b− d)

a+ b− c− d

⌉
+

⌊
kh(c− d)− (n− 1)(b− d)

a+ b− c− d

⌋
− 1,

n+ nh +

⌈
kℓ(c− d)− (n− 1)(b− d)

a+ b− c− d

⌉
+

⌊
kℓ(c− d)− (n− 1)(b− d)

a+ b− c− d

⌋
− 1}

:= min{ϕ(kℓ, kh), ψ(kℓ, kh)}.

One can check that both ϕ(kℓ, kh) and ψ(kℓ, kh) are strictly positive if kℓ ≥ kℓ and kh > kh.

Therefore, we have that ∆(kℓ, kh) > 0 and consequently, S⋆⋆⋆ =
−→
AA for any kℓ and kh with

kℓ ≥ kℓ and kh > kh. In this case, the two thresholds in the proposition are given by kℓ = kℓ = kℓ.

Proof of Proposition 5.3. First, note that according to Proposition 5.1, for any kℓ and kh with

kℓ < kℓ and kh > kh there are three absorbing sets
−→
AA,

−−→
BB and

−→
BA. The proof proceeds by using

techniques by Young (1993) and Kandori et al. (1993), which include three steps: i) calculate the

resistance of transition from one absorbing set to another; ii) calculate the stochastic potential of

each absorbing set, and iii) compare the stochastic potentials and find the smallest one.

i) Calculate the resistances of transitions.

First, we consider the transition from
−→
AA to

−→
BA. Following the same argument as in the proof

of Proposition 5.2, the minimum number of mutations for the transitions of agents in Nℓ is given

by

n−mAB
ℓ =

n− ⌊M2
ℓ ⌋ , if kℓ ≤ (n−1)(b−d)

a+b−2d
.

n− ⌊M1
ℓ ⌋ , if (n−1)(b−d)

a+b−2d
< kℓ < kℓ.

Assume that all mutations occur in Nℓ. After the mutations and consequent switches have occured,

we have reached a state in
−→
BA. Note that

−→
BA is absorbing. Thus, no agent will switch without
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further mutations. Therefore, the resistance of the transition from
−→
AA to

−→
BA is given by

r(
−→
AA,

−→
BA) =

n− ⌊M2
ℓ ⌋ , if kℓ ≤ (n−1)(b−d)

a+b−2d
.

n− ⌊M1
ℓ ⌋ , if (n−1)(b−d)

a+b−2d
< kℓ < kℓ.

(19)

Second, we consider the transition from
−→
BA to

−→
AA. Following the same argument as in the

proof of Proposition 5.2, we have that the minimum number of A-agents required for agents in Nℓ

to switch from B to A is given by

mBA
ℓ =

⌈M2
ℓ ⌉ − 1, if kℓ < (n−1)(b−d)

a+b−2d
.

⌈M1
ℓ ⌉ − 1, if (n−1)(b−d)

a+b−2d
≤ kℓ < kℓ.

Since there are already nh A-agents before the mutations, the number of mutations required for

agents in Nℓ to switch is mBA
ℓ − nh. Thus, for any kh > kh, the resistance of the transition from

−→
BA to

−→
AA is given by

r(
−→
BA,

−→
AA) =

⌈M2
ℓ ⌉ − nh − 1, if kℓ < (n−1)(b−d)

a+b−2d
.

⌈M1
ℓ ⌉ − nh − 1, if (n−1)(b−d)

a+b−2d
≤ kℓ < kℓ.

(20)

Third, consider the transition from
−−→
BB to

−→
BA . Consider agents in Nh. Attending to Table 1

reveals that the minimum number of mutations required for agents in Nh to switch from B to A

is given by mBA
h = ⌈M1

h⌉ − 1. Assume that all mutations occur in Nh. After the mutations and

consequent switches have occured, we have reached a state in
−→
BA. Since

−→
BA is absorbing, no

agent will switch without further mutations. Thus, the resistance of the transition from
−−→
BB to

−→
BA

is given by

r(
−−→
BB,

−→
BA) =

⌈
M1

h

⌉
− 1. (21)

Next, consider the transition from
−→
BA to

−−→
BB. Denote by n−mAB

h the minimum number of B-

agents required for agents in Nh to switch form action A to B. Thus, mAB
h is the maximum number

of A-agents allowed for this transition. According to Table 1, we have that mAB
h = ⌊M1

h⌋. Since
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there are already nℓ B-agents before the mutations, the minimum number of mutations required is

thus n−mAB
h − nℓ. Hence, the resistance of the transition from

−→
BA to

−−→
BB is given by

r(
−→
BA,

−−→
BB) = nh −

⌊
M1

h

⌋
. (22)

Now, consider the transition from
−→
AA to

−−→
BB. Following the same argument as in the proof of

Proposition 5.2, the minimum number of mutations for the transitions of agents in Nℓ is given by

n−mAB
ℓ =

n− ⌊M2
ℓ ⌋ , if kℓ ≤ (n−1)(b−d)

a+b−2d
.

n− ⌊M1
ℓ ⌋ , if (n−1)(b−d)

a+b−2d
< kℓ < kℓ.

We now assess the largest number ofB-agents after the mutations and switches (excluding switches

among agents in Nh for now), i.e. agents who have mutated and agents in Nℓ who have switched to

B. For this, assume all mutations occur in Nh. Thus, the largest number of B-agents is nℓ + n −

mAB
ℓ . It follows that the minimum number of remaining A-agents in Nh is mAB

ℓ − nℓ. Consider

the transitions of agents in Nh now. As above, the maximum number of A-agents allowed for

the transitions of agents in Nh is mAB
h = ⌊M1

h⌋ whenever kh > kh. If the number of A-agents

mAB
ℓ − nℓ is less than mAB

h , then agents in Nh will switch without further mutations. In this case,

the resistance of the transition is given by

r(
−→
AA,

−−→
BB) =

n− ⌊M2
ℓ ⌋ , if kℓ ≤ (n−1)(b−d)

a+b−2d
.

n− ⌊M1
ℓ ⌋ , if (n−1)(b−d)

a+b−2d
< kℓ < kℓ.

Otherwise, if mAB
ℓ − nℓ ≥ mAB

h , additional mutations are needed. In this case, assume that the

minimum number of mutations required is x. Then, we have that n− (nℓ + x) < mAB
h must hold,

i.e. the number of A-agents left after the mutations and switched in Nℓ is less than the switching

threshold. Thus, we have that x > nh−mAB
h . Since x is the minimum number, x = nh−mAB

h +1.

One can check that nh −mAB
h + 1 > n−mAB

ℓ . Therefore, we have that

r(
−→
AA,

−−→
BB) ≥ n−mAB

ℓ = r(
−→
AA,

−→
BA). (23)
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Finally, consider the transition from
−−→
BB to

−→
AA. As above, the minimum number of mutations

required for agents in Nh to switch from B to A is given by mBA
h = ⌈M1

h⌉ − 1.

To maximize the impact of the mutations, assume that all mutations occur in the low-constraint

group Nℓ. Thus, after all B-agents in Nh have switched, the maximum number of A-agents is

min{n,mBA
h + nh}. It follows that the minimum number of B-agents now is max{0, nℓ −mBA

h }.

If nℓ −mBA
h ≤ 0, i.e. if there are no B-agents, then we have reached

−→
AA and no extra mutations

are required. Thus, we have mBA = mBA
h for the relevant range of kh.

Consider the case where there are stillmBA
h +nh A-agents left after the mutation and switch, i.e.

nℓ−mBA
h > 0. Now, we have to determine whether the number ofA-agents is enough forB-agents

in Nℓ to switch. Following the same argument as above, the switching threshold for B-agents in

Nℓ is given by

mBA
ℓ =

⌈M2
ℓ ⌉ − 1 if kℓ < (n−1)(b−d)

a+b−2d
.

⌈M1
ℓ ⌉ − 1 if kℓ ≥ (n−1)(b−d)

a+b−2d
.

wheremBA
ℓ is the minimum number ofA-agents required for agents inNℓ to switch toA. It follows

that if mBA
h + nh > mBA

ℓ , then no extra mutation are required for this transition. In this case, we

have that

r(
−−→
BB,

−→
AA) =

⌈
M1

h

⌉
− 1.

If mBA
h + nh ≤ mBA

ℓ , an additional mBA
ℓ − (mBA

h + nh) mutations are needed. Then total

number of mutations is mBA
ℓ − nh. In this case, we have that

r(
−−→
BB,

−→
AA) =

⌈M2
ℓ ⌉ − nh − 1 if kℓ < (n−1)(b−d)

a+b−2d
.

⌈M1
ℓ ⌉ − nh − 1 if kℓ ≥ (n−1)(b−d)

a+b−2d
.

One can check that in both cases, we have that

r(
−−→
BB,

−→
AA) ≥

⌈
M1

h

⌉
− 1 = r(

−−→
BB,

−→
BA). (24)
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ii) Calculate the stochastic potential of each absorbing set.

Having obtained the resistances of transitions, we are now able to compute the stochastic po-

tentials of each absorbing set. We denote by rj(S⋆⋆
i ) the resistance of the j-th S⋆⋆

i -tree. Figure 5

depicts all possible
−→
AA,

−−→
BB and

−→
BA-trees.

(a) 1st
−→
AA-tree (b) 2nd

−→
AA-tree (c) 3rd

−→
AA-tree

(d) 1st
−−→
BB-tree (e) 2nd

−−→
BB-tree (f) 3rd

−−→
BB-tree

(g) 1st
−−→
BA-tree (h) 2nd

−−→
BA-tree (i) 3rd

−−→
BA-tree

Figure 5: All S⋆⋆
i -trees

First, consider all
−→
AA-trees depicted as sub-figures 5(a) to 5(c) in Figure 5. The resistances of

these trees are given by

r1(
−→
AA) = r(

−→
BA,

−−→
BB) + r(

−−→
BB,

−→
AA),

r2(
−→
AA) = r(

−−→
BB,

−→
BA) + r(

−→
BA,

−→
AA),

r3(
−→
AA) = r(

−−→
BB,

−→
AA) + r(

−→
BA,

−→
AA).
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Given inequality (24), we have that r3(
−→
AA) ≥ r2(

−→
AA). Thus, the stochastic potential of

−→
AA is

given by

γ(
−→
AA) = min{r1(

−→
AA), r2(

−→
AA)}. (25)

Now, consider all
−−→
BB-trees depicted as sub-figures 5(d) to 5(f) in Figure 5. The resistances of

these trees are given by

r1(
−−→
BB) = r(

−→
AA,

−→
BA) + r(

−→
BA,

−−→
BB),

r2(
−−→
BB) = r(

−→
BA,

−→
AA) + r(

−→
AA,

−−→
BB),

r3(
−−→
BB) = r(

−→
BA,

−−→
BB) + r(

−→
AA,

−−→
BB).

Given inequality (23), we have that r3(
−−→
BB) ≥ r1(

−−→
BB). Thus, the stochastic potential of

−−→
BB is

given by

γ(
−−→
BB) = min{r1(

−−→
BB), r2(

−−→
BB)}. (26)

Finally, consider all
−−→
BB-trees depicted as sub-figures 5(g) to 5(i) in Figure 5. The resistances

of these trees are given by

r1(
−→
BA) = r(

−→
AA,

−−→
BB) + r(

−−→
BB,

−→
BA),

r2(
−→
BA) = r(

−−→
BB,

−→
AA) + r(

−→
AA,

−→
BA),

r3(
−→
BA) = r(

−−→
BB,

−→
BA) + r(

−→
AA,

−→
BA).

Given the two inequalities (23) and (24) , we have that r1(
−→
BA) ≥ r3(

−→
BA) and r2(

−→
BA) ≥ r3(

−→
BA).

Thus, the stochastic potential of
−→
BA is given by

γ(
−→
BA) = r3(

−→
BA) =

n− ⌊M1
ℓ ⌋+ ⌈M1

h⌉ − 1 if kℓ ≥ (n−1)(b−d)
a+b−2d

.

n− ⌊M2
ℓ ⌋+ ⌈M1

h⌉ − 1 if kℓ < (n−1)(b−d)
a+b−2d

.

(27)
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iii) Find the region of kℓ and kh such that the stochastic potential of
−→
BA is the smallest.

Having obtained the stochastic potentials, we now move on to find the regions of kℓ and kh

where the stochastic potential of
−→
BA is the smallest. To do so, both γ(

−→
BA) ≤ γ(

−→
AA) and γ(

−→
BA) ≤

γ(
−−→
BB) must hold. Given equations (25), (26) and (27), we thus have that

γ(
−→
AA)− γ(

−→
BA) = min{r1(

−→
AA)− r3(

−→
BA), r2(

−→
AA)− r3(

−→
BA)} ≥ 0. (28)

and

γ(
−−→
BB)− γ(

−→
BA) = min{r1(

−−→
BB)− r3(

−→
BA), r2(

−−→
BB)− r3(

−→
BA)} ≥ 0. (29)

Note that above two inequalities (28) and (29) hold if and only if the following four inequalities

hold

r1(
−→
AA) ≥ r3(

−→
BA), r2(

−→
AA) ≥ r3(

−→
BA);

r1(
−−→
BB) ≥ r3(

−→
BA), r2(

−−→
BB) ≥ r3(

−→
BA).

(30)

By substituting above equations of the resistances, we rewrite inequalities in (30) as following

r(
−→
BA,

−−→
BB) + r(

−−→
BB,

−→
AA) ≥ r(

−−→
BB,

−→
BA) + r(

−→
AA,

−→
BA), (31a)

r(
−→
BA,

−→
AA)− r(

−→
AA,

−→
BA) ≥ 0, (31b)

r(
−→
BA,

−−→
BB)− r(

−−→
BB,

−→
BA) ≥ 0, (31c)

r(
−→
BA,

−→
AA) + r(

−→
AA,

−−→
BB) ≥ r(

−−→
BB,

−→
BA) + r(

−→
AA,

−→
BA). (31d)

Now, we substitute our results of resistances of transitions in the above four inequalities (31a)

to (31d), we have that

nh + 1− ⌊M1
h⌋ − ⌈M1

h⌉ ≥ 0, (32a)
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⌊Mℓ⌋+ ⌈Mℓ⌉ − n− nh − 1 ≥ 0., (32b)

⌊Mℓ⌋ − ⌊M1
h⌋ − nℓ ≥ 0, (32c)

⌈Mℓ⌉ − ⌈M1
h⌉ − nh ≥ 0. (32d)

where

Mℓ =

M
2
ℓ , if kℓ ≤ (n−1)(b−d)

a+b−2d
.

M1
ℓ , if (n−1)(b−d)

a+b−2d
< kℓ < kℓ.

Let Φ(kh) = nh + 1− ⌊M1
h⌋ − ⌈M1

h⌉ and Ψ(kℓ) = ⌊Mℓ⌋+ ⌈Mℓ⌉ − n− nh − 1. We have that

Φ(kh) = nh − 1−
⌊
(n− 1)(b− d)− kh(c− d)

a+ b− c− d

⌋
−

⌈
(n− 1)(b− d)− kh(c− d)

a+ b− c− d

⌉
. (33)

and

Ψ(kℓ) =


⌊
(n−1)(b−d)−kℓ(c−d)

a+b−c−d

⌋
+
⌈
(n−1)(b−d)−kℓ(c−d)

a+b−c−d

⌉
− n− nh + 1 if kℓ ≥ (n−1)(b−d)

a+b−2d
.⌊

n− a−d
b−d

· kℓ
⌋
+
⌈
n− a−d

b−d
· kℓ

⌉
− n− nh − 1 if kℓ < (n−1)(b−d)

a+b−2d
.

(34)

We find that Φ(kh) = 0 whenever kh ∈ [2(n−1)(b−d)−nh(a+b−c−d)
2(c−d)

− a+b−c−d
c−d

, 2(n−1)(b−d)−nh(a+b−c−d)
2(c−d)

).

Let kh⋆ ≡ 2(n−1)(b−d)−nh(a+b−c−d)
2(c−d)

− a+b−c−d
c−d

. Note that Φ(kh) is weakly increasing in kh. Thus,

for any kh ≥ kh
⋆, we have that Φ(kh) ≥ 0.

Moreover, Ψ(kℓ) is weakly decreasing in kℓ with kℓ < kℓ. Thus, we have that

Ψmin(k
ℓ) > Φ(kℓ) = 1− nℓ < 0. (35)

and

Ψmax(k
ℓ) = Φ(1) = nℓ − 2 ≥ 0. (36)

Thus, there exists an interval of kℓ, such that for any kℓ in this interval we have Ψ(kℓ) = 0.

Since Ψ(kℓ) is weakly decreasing in kℓ, we have that Ψ(kℓ) > 0 if kℓ falls below this interval and
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Ψ(kℓ) < 0 if kℓ falls above. Let kℓ⋆ equal to the upper bound of this interval. Thus, for any kℓ ≤ kℓ
⋆

we have that Ψ(kℓ) ≥ 0.

Whenever kℓ ≤ kℓ
⋆ and kh ≥ kh

⋆, one can check that ⌊Mℓ⌋ − ⌊M1
h⌋ − nℓ ≥ 0 and ⌈Mℓ⌉ −

⌈M1
h⌉ − nh ≥ 0 hold. Thus, for any kℓ and kh with kℓ ≤ kℓ

⋆ and kh ≥ kh
⋆, we have that

γ(
−→
BA) ≤ γ(

−→
AA) and γ(

−→
BA) ≤ γ(

−−→
BB). Consequently,

−→
BA ⊆ S⋆⋆⋆.

Now, we proceed to identify thresholds for kℓ and kh such that
−→
BA is the unique set of stochas-

tically stable states. The proof is almost the same as the argument above. The only difference is in

inequalities (32a) to (32d), which now are required to be strictly positive. Then, instead of solving

Φ(kh) ≥ 0 and Ψ(kℓ) ≥ 0 as above, we now solve Φ(kh) > 0 and Ψ(kℓ) > 0 for the ranges of kℓ

and kh. In this case, kh⋆⋆ is the upper bound of the solution such that Φ(kh) = 0. Similarly, kℓ⋆⋆

is now the lower bound of the solution such that Ψ(kℓ) ≥ 0. Consequently, for any kℓ and kh with

kℓ < kℓ
⋆⋆ and kh > kh

⋆⋆, we have that γ(
−→
BA) < γ(

−→
AA) and γ(

−→
BA) < γ(

−−→
BB). Thus, S⋆⋆⋆ =

−→
BA.
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